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Abstract

In this work, we develop a rigorous hypothesis testing method to determine whether pairwise comparison data is
generated by an underlying generalized Thurstone model TF for a given choice function F . Given n agents, a TF model
assumes that each agent i has a latent utility parameter wi and the probability that agent i is preferred over agent j in a
pairwise comparison (e.g., a game) is given by F (wi −wj). While prior work has predominantly focused on parameter
estimation and uncertainty quantification for such models, our work bridges a crucial gap by developing a hypothesis
testing approach for TF models. We formulate this testing problem in a minimax sense by introducing a notion of
separation distance between a general pairwise comparison model and the class of TF models. We then derive both upper
and lower bounds on the critical threshold of our minimax hypothesis testing problem, which depend on the topology
of the underlying observation graph of comparisons. For example, in the setting where all possible pairwise comparisons
are observed (i.e., complete observation graph), the critical threshold scales as Θ((nk)−1/2), where k is the number of
pairwise comparisons between each pair of agents. Furthermore, we propose a specific hypothesis test inspired by our
separation distance for our testing problem, and assess its performance by establishing “time-uniform” upper bounds on
type I and type II error probabilities using reverse martingale ideas. To complement this, we also develop a minimax risk
lower bound for our testing problem using information-theoretic ideas. Additionally, we prove several auxiliary results
over the course of our analysis, such as error bounds on parameter estimation and “time-uniform” confidence intervals.
Finally, we conduct several experiments on synthetic and real-world datasets to validate some of our theoretical results
and test for TF models. In the process, we also propose a data-driven approach to find the threshold of our test.

I. INTRODUCTION

Learning rankings from data is a fundamental problem underlying numerous applications, including recommendation
systems [1], sports tournaments [2], [3], fine-tuning large language model (LLMs) [4], and social choice theory [5], [6].
The class of generalized Thurstone models (GTMs) [7]–[9], which fall under the broader framework of random utility
models, is a widely adopted framework for ranking agents, items, or choices based on given preference data. GTMs
include many other models as special cases, most notably the Bradley-Terry-Luce (BTL) model [2], [5], [10], which
has been widely studied. Given n agents [n] = {1, . . . , n}, GTMs can be construed as likelihood models for pairwise
comparisons between pairs of agents. In particular, a GTM TF assumes that each agent i is endowed with an unknown
utility parameter wi ∈ R and the probability that agent i is preferred over agent j (e.g., i beats j in a game) is given
by F (wi − wj), where F represents a known choice function which is a cumulative distribution function (CDF).

While GTMs have been utilized in many contexts, e.g., [11], [12], they are parametric models where n utility
parameters characterize the model. Indeed, the assumption that pairwise comparison data is governed by a small number
of parameters forms the basis of most results on GTMs [3], [13]–[15]. However, such parametric models can sometimes
be too restrictive, failing to capture intricacies in real applications [16]–[18]. Notably, GTMs struggle to accommodate
context-dependent effects, such as the home-advantage effect observed in sports tournaments [19], [20], where teams
may perform differently when playing at home versus away. Furthermore, GTMs assume transitive relationships, which
may not hold in real-world datasets. To accurately capture the complex and diverse behaviors observed in real-world
data, non-parametric models, e.g., [14], [21], have been studied as an alternative. This conversation raises an important
question: Given pairwise comparison data, can we determine whether it is comes from a specific GTM? If it does, then
we can rely on the vast GTM literature for learning, and if it does not, then we can resort to using other parametric
models such as the Mallows model [22] or non-parametric models [23].

Despite extensive research in the area, there is no systematic answer to the above question in the literature, i.e.,
there is no rigorously analyzed hypothesis test to determine whether given pairwise comparison data conforms to an
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underlying GTM model. To address this, we study the composite hypothesis testing problem of whether data obeys a
GTM TF for a given choice function F :

H0 : Z ∼ TF for some choice of w ∈ W,

H1 : Z ∼ general pairwise comparison model that is not TF ,
(1)

where Z denotes the pairwise comparison data, and H0 and H1 are the null and alternative hypotheses, respectively
and W denotes the parameter set for weight w.

A. Main Contributions

We analyze the composite hypothesis testing problem outlined in (1) with a specified choice function F . Our main
contributions include the following:

1) We frame the hypothesis testing problem in a minimax sense (Section II) by developing a rigorous notion of
separation distance to the class of all GTMs that admits tractable analysis (Section III, Theorem 1).

2) We derive upper and lower bounds on the critical threshold for our test (Section III, Theorem 2 and Proposition 2).
These bounds exhibit a dependence on the graph induced by the pairwise comparison data (see Section III-B)
and are tight for complete graphs.

3) We use the separation distance to propose a hypothesis test and establish various theoretical guarantees for
our test. Specifically, we prove “time-uniform” type I and type II error probability upper bounds for our test
(Section III, Theorems 4 and 5), and also provide a minimax lower bound.

4) Additionally, we obtain auxiliary results like error bounds on parameter estimation for general pairwise comparison
models (Theorem 3) and “time-uniform” confidence intervals under the null hypothesis (Proposition 4).

5) Finally, we validate our theoretical findings through synthetic and real-world experiments, proposing a data-driven
approach to determine the test threshold and using the test to determine different choice functions’ fit to the data
(Section VIII).

B. Related Literature

The class of GTMs has a rich history in the analysis of preference data. Initially proposed by Thurstone [7], these
models are widely used in various fields, ranging from psychology [24], economics [25], and more recent applications
like aligning LLMs with human preferences [4]. Early foundational works, e.g., [5]–[7], explored different cumulative
distribution functions F for modeling choice probabilities, including Gaussian [7], logistic [2], and Laplace [26]. These
models and their extensions underlie popular rating systems, such as Elo in chess [11], [12], [27] and TrueSkill in video
games [28]. Several recent works have actively explored estimation techniques for Thurstone models. For instance,
[13] estimated parameters of Thurstone models when the preference data is derived from general subsets of agents
(not specifically pairs), and [14] focused on parameter estimation for GTMs and the effect of graph topology on the
estimation accuracy.

Furthermore, a significant portion of the literature has focused on parameter estimation in the special case of the BTL
model, e.g., [15], [29]–[33], where two prominent algorithms are spectral ranking [30], [31] and maximum likelihood
estimation [27], [34]. Another related line of work is on uncertainty quantification for estimated parameters [35]–[38].
For example, [35] established the asymptotic normality of estimated parameters in the BTL model for both spectral
ranking and maximum likelihood estimation, and [36] generalized the asymptotic normality results to a broader class
of models such as GTMs and Mallows models.

Despite the extensive work on parameter estimation, relatively few studies have rigorously investigated hypothesis
testing for such parametric models. In particular, [39] developed two-sample tests for preference data, [40] studied
lower bounds for testing the independence of irrelevant alternatives (IIA) assumption (i.e., BTL and Plackett-Luce
models [5], [41]), and [42] developed hypothesis tests for BTL models based on spectral methods. In contrast to these
works, we develop hypothesis testing for GTMs using a maximum likelihood framework, complementing the work in
[42].

II. FORMAL MODEL AND SETUP

We begin by introducing a general pairwise comparison model that provides a flexible framework encompassing a
broad range of established probabilistic models, including the BTL model [2], [5], [10], the Thurstone model [7], and
non-parametric models [14], [21]. In this framework, we consider n ∈ N\{1} agents (or items or choices) [n] engaged
in pairwise comparisons. For agents i, j ∈ [n] with i ̸= j, let pij ∈ (0, 1) denote the probability that i is preferred over
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j in an “i vs. j” pairwise comparison. This model inherently captures the asymmetric nature of pairwise comparisons,
as the outcome of an “i vs. j” comparison may differ from that of a “j vs. i” comparison. This reflects real-world
phenomena like “home advantage” that are commonly observed in sports [19], [20]. To model the fact that not all
pairwise comparisons may be observed, we assume that we are given an induced observation graph G = ([n], E), where
an edge (i, j) ∈ E (with i ̸= j) exists if and only if comparisons of the form “i vs. j” are observed. Let E ∈ {0, 1}n×n

be the adjacency matrix of G, with Eij = 1 if (i, j) ∈ E and 0 otherwise. Furthermore, we assume that the edge set E
is symmetric (i.e., G is undirected), implying that if “i vs. j” comparisons are observed, then “j vs. i” comparisons are
observed as well. Additionally, we assume that G is connected and is fixed a priori (see Proposition 1), independent of
the outcomes of observed pairwise comparisons. Also, let D ∈ Rn×n the diagonal degree matrix with Dii =

∑n
j=1 Eij

for i ∈ [n], and L ≜ D−E be the graph Laplacian matrix. L can be expressed as L = XTX , where X ∈ R(|E|/2)×n

is the matrix formed by collecting row vectors xij = ei − ej for (i, j) ∈ E and j > i, with ei being the ith standard
basis vector in Rn. For the Laplacian L, we define the semi-norm with respect to L as ∥x∥L =

√
xTLx, where x ∈ Rn

and L is the graph Laplacian matrix.

A. Comparison Models
1) Pairwise Comparison Model: We begin by defining a general pairwise comparison model which encompasses a

broad range of existing models, such as the BTL model [2], [5], [10], Thurstonian model [7], non-parametric models
[14], [21], etc.

Definition 1 (Pairwise Comparison Model). Given an observation graph G over the agents [n], we refer to the collection
of probability parameters {pij : (i, j) ∈ E} as a pairwise comparison model.

Furthermore, we can represent a pairwise comparison model by a pairwise comparison matrix P ∈ [0, 1]n×n with

Pij ≜

{
pij , (i, j) ∈ E ,
0, otherwise.

(2)

We remark that our ensuing analysis can be easily specialized to a symmetric setting where “i vs. j” and “j vs. i”
comparisons are equivalent. In this case, E is automatically symmetric as assumed. On the other hand, the symmetry
assumption on E is needed in asymmetric settings because GTMs inherently treat “i vs. j” and “j vs. i” comparisons
as equivalent, which is not true in general models.

2) GTM model: Next, we describe a GTM for a choice function F : R → [0, 1] (a special kind of CDF).

Definition 2 (Generalized Thurstone Model). Given an observation graph G, a pairwise comparison model is said to
be a generalized Thurstone model (GTM) TF with choice function F : R → [0, 1] if there exists a weight (or utility)
vector w ∈ W such that:

∀(i, j) ∈ E , pij = F (wi − wj),

where W ⊆ Rn is a specified convex parameter space (usually Rn or a compact hypercube in Rn).

The GTM [8], [9] posits that every agent i has a latent utility wi, and uncertainty in the comparison process is modeled
by independent and identically distributed (i.i.d.) noise random variables X1, . . . , Xn with absolutely continuous CDF
G : R → [0, 1]. The discriminant variables (w1 + X1, . . . , wn + Xn) formed by combining utilities with the noise
random variables are then compared to determine the outcomes of pairwise comparisons. Hence, the probability of
preferring agent i over j is given by

P(i preferred over j) = P(wi +Xi > wj +Xj) =

∫ ∞

−∞
G(y + wi − wj)G

′(y) dy = F (wi − wj). (3)

As noted earlier, GTMs encompass a wide range of models as special cases, e.g., Thurstone models [7], BTL models
[2], [5], Dawkins models [26], etc. We can also define a pairwise probability matrix F(w) ∈ [0, 1]n×n for a GTM TF
with weight vector w via

(F(w))ij ≜

{
F (wi − wj), (i, j) ∈ E ,
0, otherwise.

(4)

We next describe the data generation process for GTMs and general pairwise comparison models alike. For any pair
(i, j) ∈ E , define the outcome of the mth “i vs. j” pairwise comparison between them as the Bernoulli random variable

Zm
ij ≜

{
1, if i preferred over j (with probability pij),

0, if j preferred over i (with probability 1− pij),
(5)
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for m ∈ [kij ], where kij denotes the number of observed “i vs. j” comparisons. The given pairwise comparison data
is then a collection of these independent Bernoulli variables Z ≜ {Zm

ij : (i, j) ∈ E , m ∈ [ki,j ]}. For convenience, we
also let Zij ≜

∑kij

m=1 Z
m
ij and p̂ij ≜ Zij/kij .

3) Parameter Estimation for GTM: To present our testing formulation in the sequel, we explain how the parameters of
a TF model are estimated given pairwise comparison data Z [14]. First, we define the weighted negative log-likelihood
function l : W × [0, 1]|E| → R+ ∪ {+∞} as

l(w; {p̂ij : (i, j) ∈ E}) ≜ −
∑

(i,j)∈E

p̂ij log(F (wi − wj)) + (1− p̂ij) log(1− F (wi − wj)). (6)

Note that this function represents a weighted variant of the typical log-likelihood function used in parameter estimation
[13], [14]. The weights of the TF model are estimated by minimizing:

ŵ ≜ argmin
w∈Wb

l(w; {p̂ij : (i, j) ∈ E}), (7)

where the constraint set Wb ≜ {w ∈ W : ∥w∥∞ ≤ b, wT1 = 0} for some (universal) constant b, 1∈Rn denotes an
all-ones vector, and the constraint wT1=0 allows for identifiability of the weights.

B. Assumption on Comparison Models

To facilitate the analysis of the hypothesis testing problem in (1), we introduce a simplifying assumption on the
class of general pairwise comparison models. We assume that the pairwise probabilities pij are bounded away from 0
and 1.

Assumption 1 (Dynamic Range). There exists a constant δ > 0 such that for any pairwise comparison model under
consideration, pij ∈ [δ, 1− δ] for all (i, j) ∈ E .

Note that under the null hypothesis, the Assumption 1 is satisfied by all TF models with weights bounded by
F−1(1 − δ)/2. Subsequently, we assume that the constant b satisfies b ≥ F−1(1 − δ)/2. For any given pairwise
comparison model {pij : (i, j) ∈ E}, define w∗ ∈ Wb be the weights of a TF model that best approximates this
pairwise comparison model in the maximum likelihood sense:

w∗ ≜ argmin
w∈Wb

l(w; {pij : (i, j) ∈ E}). (8)

Finally, we also assume in the sequel that the given choice function F exhibits strong log-concavity and has a bounded
derivative on [−2b, 2b], i.e., there exists a constant α, β > 0 such that:

∀x ∈ [−2b, 2b], − d2

dx2
log(F (x)) ≥ α and F ′(x) ≤ β. (9)

Several popular GTMs including the BTL and Thurstone (Case V) model satisfy both the above assumptions. The
following proposition highlights that w∗ always exists and is unique for a strictly log-concave function F on Wb.

Proposition 1 (Existence and Uniqueness of Maximum Likelihood). Suppose the observation graph G is connected,
the choice function F : R → [0, 1] is strictly log-concave on [−2b, 2b], and Assumption 1 holds. Then, there exists a
unique optimal solution w∗ ∈ Wb satisfying (8).

The proof is provided in Section IV-B. It follows from Proposition 1 and Gibbs’ inequality that when the pairwise
comparison model is indeed a TF model with weight vector w, then we have w∗ = w.

C. Minimax Formulation

For any fixed graph G, choice function F , and (universal) constants δ, ϵ > 0 and b ≥ F−1(1− δ)/2, define the sets
M0 and M1(ϵ) of TF and pairwise comparison models:

M0 ≜ {P : Assumption 1 holds and ∃ w ∈ Wb such that P = F(w)}, (10)

M1(ϵ) ≜

{
P : Assumption 1 holds and inf

w∈Wb

1

n
∥P − F(w)∥F ≥ ϵ

}
, (11)

where ∥ · ∥F denotes Frobenius norm. Now, we formalize the hypothesis testing problem in (1) as:
H0 : Z ∼ P ∈ M0,

H1 : Z ∼ P ∈ M1(ϵ).
(12)
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We will discuss the separation distance infw∈Wb
∥P − F(w)∥F later. For now, note that we only test on the set of

observed comparisons E as it is not possible to determine whether the comparisons on Ec would conform to a TF model
or some other pairwise comparison model. Next, for any fixed graph G, choice function F , and constants δ, b, ϵ > 0,
we define the minimax risk as:

R(G, ϵ) ≜ inf
ϕ

{
sup

P∈M0

PH0
(ϕ(Z) = 1)︸ ︷︷ ︸

Z∼P under H0

+ sup
P∈M1(ϵ)

PH1
(ϕ(Z) = 0)︸ ︷︷ ︸

Z∼P under H1

}
, (13)

where the infimum is taken over all randomized decision rules ϕ(Z) ∈ {0, 1} (with 0 corresponding to H0 and 1 to
H1), and PH0

and PH1
denote the probability measures under hypotheses H0 and H1, respectively. Intuitively, this

risk minimizes the sum of the worst-case type I and type II errors. Finally, we define the critical threshold of the
hypothesis testing problem in (12) as the smallest value of ϵ for which the minimax risk is bounded by 1

2 (cf. [39]):

εc ≜ inf

{
ϵ > 0 : R(G, ϵ) ≤ 1

2

}
. (14)

Note that the constant 1
2 here is arbitrary and can be replaced by any constant in (0, 1).

III. MAIN RESULTS

In this section, we present the main results of the paper. We first show that our notion of separation distance can be
simplified for analysis, then proceed to bound the critical threshold and minimax risk, and finally, establish type I and
II error bounds in the sequential setting.

A. Separation Distance and Test Statistic

Recall that to formalize (12), we defined the separation distance of a pairwise comparison model P to the class
of TF models as infw∈Wb

∥P − F(w)∥F (for fixed F ). To make this separation distance more amenable to theoretical
analysis, we approximate it in the next theorem with the simpler quantity ∥P − F(w∗)∥F, where w∗ is given in (8).

Theorem 1 (Separation Distance to TF Models). Let P be a pairwise comparison matrix satisfying Assumption 1.
Then, there exists a universal constant c1 > 0 (that does not depend on n) such that the separation distance between
P and the class of TF models satisfies

c1∥P − F(w∗)∥F ≤ inf
w∈Wb

∥P − F(w)∥F ≤ ∥P − F(w∗)∥F,

where w∗ is given by (8).

The proof is provided in Section IV-C. The upper bound is immediate, and the lower bound utilizes the information-
theoretic bounds between f -divergences.

1) Test Statistic: We now introduce our test statistic based on the approximation derived in Theorem 1. First, we
partition the observed comparison data Z into two (roughly) equal parts Z1 = {Zm

ij : (i, j) ∈ E , m ∈ [⌊kij/2⌋]} and
Z2 = Z \ Z1. The first half of the dataset Z1 is used to estimate the parameters ŵ as shown in (7). Then, we use Z2

to calculate the test statistic T via

T ≜
∑

(i,j)∈E

(
Zij(Zij − 1)

k′ij(k
′
ij − 1)

+ F (ŵi − ŵj)
2 − 2F (ŵi − ŵj)

Zij

k′ij

)
1k′

ij>1, (15)

where k′ij = kij − ⌊kij/2⌋, Zij =
∑

m>⌊kij/2⌋ Z
m
ij is computed as before but using only the samples in Z2, and 1A

denotes the indicator function of A. By construction, if ŵ = w∗, then E[T ] = ∥P −F(w∗)∥2F. Hence, T is constructed
by plugging in ŵ in place of w∗ in an unbiased estimator of ∥P − F(w∗)∥2F. Our proposed hypothesis test thresholds
T to determine the unknown hypothesis (H1 is selected if T exceeds a certain threshold). We will discuss analytical
expressions for the threshold below and a data-driven manner of determining the threshold in Section VIII.

5



B. Upper Bound on Critical Threshold

In this section, we make the simplifying assumption that kij = 2k (with k ∈ N) for all (i, j) ∈ E . The ensuing
theorem proved in Section V establishes an upper bound on the critical threshold of the hypothesis testing problem
defined in (12).

Theorem 2 (Upper Bound on Critical Threshold). Consider the hypothesis testing problem in (12), and assume that
Assumption 1 holds and k ≥ 2. Then, there exists a constant c2 > 0 such that the critical threshold defined in (14) is
upper bounded by

ε2c ≤ c2
nk

.

In analysis we select H1 if T > γ n
k and H0 otherwise, where γ is an appropriate constant independent of n, k (see

(37)). The analysis relies on establishing non-trivial error bounds (in ∥ · ∥L seminorm) for parameter estimation of TF
models when the data is generated by a general pairwise comparison model, which is not necessarily a GTM (i.e.,
deriving error bounds under a potential model mismatch). The error bounds allow us to prove bounds on the mean
and variance of the test statistic T under both hypotheses H0 and H1. Then, using Chebyshev’s inequality, we can
bound the probabilities of error of our test under each of the hypotheses, which induces an upper bound on the critical
threshold.

We also note that in the special case where TF is a BTL model, our upper bound on εc recovers the bound in [42] for
complete graphs. But our likelihood-based proof is quite different to the spectral ideas in [42]. Finally, we present the
key ℓ2-error bounds for parameter estimation when data is generated by a general pairwise comparison model needed
to prove Theorem 2 (as mentioned above).

Theorem 3 (Error Bounds for Parameter Estimation). Consider any pairwise comparison model satisfying Assumption 1
with w∗ given by (8) and ŵ constructed according to (7) from data generated by the model. Then, for some constant
c3 > 0, the following tail bound holds on the estimation error of w∗:

∀t ≥ 1, P
(
∥ŵ − w∗∥2L ≥ c3nβ

2

α2kF (−2b)2
t

)
≤ e−t,

where α is defined in (9). Moreover, for any p ≥ 1, there exists a p-dependent constant c(p) > 0 such that the expected
pth moment of the error is bounded by

E[∥ŵ − w∗∥pL] ≤
(

c(p)nβ2

α2kF (−2b)2

) p
2

.

The proof is provided in Section IV-D. In the special case where the pairwise comparison model is a GTM, our
bounds recover the bounds derived in [14, Theorem 3] up to constants. However, our result is much more general
because it holds for any pairwise comparison model, which requires careful formulation and development of the proof
technique.

These error bounds can be easily converted into ℓ2-error bounds using the relation ∥ŵ−w∗∥2L ≥ λ2(L)∥ŵ−w∗∥22,
where λ2(L) is the second smallest eigenvalue of the Laplacian L. It is worth emphasizing the dependence of the error
bound on the topology of the observation graph G. The connectedness of the graph ensures λ2(L) > 0, and the value
of λ2(L) is well-known for various classes of graphs:

• For a complete graph on n nodes, dmax = n− 1 and λ2(L) = n, yielding an ℓ2-error bound of O(1/k).
• For a d-regular spectral expander graph with constant d, dmax = d and λ2(L) ≥ d−2

√
d [43], yielding an ℓ2-error

bound of O(1/k).
• For a single cycle graph on n nodes, dmax = 2 and λ2(L) = Θ(1/n2), yielding an ℓ2-error bound of O(n

3

k ).
• For a two-dimensional

√
n ×

√
n toroidal grid (formed by the Cartesian product of two cycles of length

√
n),

dmax = 4 and λ2(L) = Θ(1/n), yielding an ℓ2-error bound of O(n
2

k ).

C. Information-Theoretic Lower Bounds

We now establish information-theoretic lower bounds on the minimax risk and critical threshold for the hypothesis
testing problem in (12). For simplicity and analytical tractability, assume that kij = k ∈ N for all (i, j) ∈ E , and
assume that the observation graph G is super-Eulerian [44], i.e., it has an Eulerian spanning sub-graph G̃ = ([n], Ẽ) so
that every vertex of G̃ has even degree. Then, G̃ has a cycle decomposition C by Veblen’s theorem [40], [45], where C
is a collection of simple cycles σ that partitions the undirected edges of G̃. The ensuing theorem, proved in Section VI,
presents our minimax risk lower bound.
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TABLE I: Bounds in this work on critical threshold εc for various induced observation graphs, where n represents the
number of agents and k is the number of comparisons between agents per pair.

Complete graph d-regular graph Single cycle Toroidal grid

Upper bound O

(
1

√
nk

)
O

(
1

√
nk

)
O

(
1

√
nk

)
O

(
1

√
nk

)
Lower bound Ω

(
1

√
nk

)
Ω

(
1

√
n2k

)
Ω

(
1

√
n2k

)
Ω

(
1

√
n7/4k

)

Theorem 4 (Minimax Lower Bound). Consider the hypothesis testing problem in (12) and assume that the observation
graph G is super-Eulerian with spanning Eulerian sub-graph G̃. Then, there exists a constant c4 > 0 such that for any
ϵ > 0, the minimax risk in (13) is lower bounded by

R(G, ϵ) ≥ 1− 1

2

√√√√exp

(
c4k2n4ϵ4

|Ẽ |2
∑
σ∈C

|σ|2
)

− 1 ,

where |σ| denotes the length of a cycle σ ∈ C, and C is the cycle decomposition of G̃.

Our approach utilizes the Ingster-Suslina method [46], which is similar to Le Cam’s method, but provides a lower
bound by considering a cleverly chosen point and a mixture on the parameter space instead of just two points. Our
specific construction is inspired by the technique introduced in [40], which establishes a lower bound for testing of IIA
assumption for the BTL model and for Eulerian graph structures. We extend their approach in three significant ways.
First, we generalize their method to accommodate any GTM rather than just the BTL model. Second, we use a different
technique based on Theorem 1 to lower bound separation distance from the class of TF models. Moreover, our work
quantifies separation using Frobenius norm instead of sums of total variation distances. Third, our argument holds for a
broader class of graphs, namely, super-Eulerian graphs. Note that the question of algorithmically constructing Eulerian
sub-graphs of graphs has been widely studied [47].

The following proposition simplifies Theorem 4 to obtain lower bounds on the critical threshold for several classes
of graphs.

Proposition 2 (Lower Bounds on Critical Threshold). Under the assumptions of Theorem 4, the following lower bounds
hold for the critical threshold defined in (14):
1) If G is a complete graph with odd n vertices, then ε2c = Ω(1/nk).
2) If G is a d-regular graph with constant d ≥ 2, then ε2c = Ω(1/n2k).
3) If G is a single cycle graph with n vertices, then ε2c = Ω(1/n2k).
4) If G is a two-dimensional

√
n ×

√
n toroidal grid on n vertices formed by the Cartesian product of two cycles of

length
√
n, then ε2c = Ω(1/n7/4k).

The proof of Proposition 2 involves calculating the number of simple cycles and the individual cycle lengths in the
cycle decompositions C and is provided in Section VI-B. The lower bounds on εc are then obtained from Theorem 4.
We remark that our minimax upper and lower bounds on εc match for the complete graph case, demonstrating the
minimax optimality of the threshold’s scaling (up to constant factors). Moreover, they also match with respect to k for
other classes of graphs as well. It is worth mentioning that in the special case of BTL models with single cycle graphs,
our lower bound on εc improves the high-level scaling behavior in [40] from Ω(1/

√
n3k) to Ω(1/

√
n2k) (when εc is

quantified in terms of Frobenius norm). Lastly, we remark that for single cycle graphs, the gap between the upper and
lower bounds in terms of n intuitively holds because our lower bounds become larger when there are more cycles in
C, which is only 1 in this case.

D. Upper Bounds on Type I and II Error Probabilities

To complement the minimax risk lower bound in Theorem 4, we establish upper bounds on the extremal type I and II
error probabilities. We will do this in the sequential setting, where data is observed incrementally—a common practical
scenario which subsumes the standard fixed sample-size setting, cf. [48], [49]. In the sequential testing framework, at
each time step, we observe a single “i vs. j” comparison for every (i, j) ∈ E . (The subsequent analysis can be extended
to a general setting where we observe only one comparison for some pair (i, j) ∈ E or even a variable number of
comparisons at every time step.) At time k1 + k with k1, k ∈ N, we define T k1,k to be the value of the test statistic
T in (15), where comparisons from k1 time-steps have been used to build the dataset Z1 to estimate parameters using
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ŵ, and k time-steps have been used to build the dataset Z2 to calculate the statistic T . Note that Z1 and Z2 no longer
need to be similar in size. Then, we can decide based on thresholding T k1,k (see Theorem 5) whether to collect more
data or stop and reject H0 while controlling the probabilities of error. If the testing process ends without rejecting H0,
then we can accept H0. A key observation underlying our analysis is the following reverse martingale property (see,
e.g., [48], [49]).

Proposition 3 (Reverse Martingale). Fix any k1 ∈ N, and let Fk =
⊗

(i,j)∈E σ(
∑k1+k

m=k1+1 Z
m
ij , Z

k1+k+1
ij , Zk1+k+2

ij , . . . )
be a non-increasing sequence of σ-algebras, where

⊗
denotes the product σ-algebra. Then, the sequence of test-

statistics {T k1,k : k ≥ 2} is a reverse martingale with respect to reverse filtration {Fk :k ≥ 2}, i.e., for k≥2, T k1,k

is Fk-measurable and E
[
T k1,k|Fk+1

]
=T k1,k+1.

The proof is presented in Section VII-A. This observation allows us to develop time-uniform bounds in terms of k
on type I and type II error probabilities, i.e., they hold for all k larger than a constant. The next theorem, proved in
Section VII-C, presents our type I and type II error probability bounds.

Theorem 5 (Type I and Type II Error Probability Bounds). Under the sequential setting discussed above, the following
bounds hold on the extremal type I and type II error probabilities. There exist constants c5, c6, c7, c8 such that for all
t ≥ 1, ν ∈ (0, 1/e), k1 ∈ N and ϵ ≥ c5t

1
2 /

√
nk1, we have

sup
P∈M0

PH0

(
∃k ≥ 2, T k1,k≥ c6t

n

k1
+

c7|E|
1
2 ℓk,ν
k

+ c8

√
ntℓk,ν
k1k

)
≤ ν+e−t,

sup
P∈M1(ϵ)

PH1

(
∃k ≥ 2, T k1,k−(D − c5t

1
2n

1
2 /k

1
2
1 )

2≤ −c7|E|
1
2 ℓk,ν
k

−(4D +c8t
1
2n

1
2 /k

1
2
1 )

√
ℓk,ν
k

)
≤ ν+e−t,

where D ≜ ∥P − F(w∗)∥F and ε̃ ≜
√

n/k1 and ℓk,ν ≜ log
(
3.5 log2(k)/ν

)
.

We now make several remarks. Firstly, our error probability bounds encode the scalings of the thresholds to accept
or reject H0 (see (37)). Secondly, our bounds hold regardless of how the decision-maker assigns data collected at
different time-steps to Z1 and Z2. Moreover, they provide insights on how to split the data based on the topology of
the observation graph, e.g., the bounds suggest an equal split of the data for complete graphs, whereas for a single
cycle, achieving better Type I error control favors a larger value of k1. To illustrate this and help parse Theorem 5, we
present corollaries of Theorem 5 for the complete and single cycle graph cases in Appendix A.

Thirdly, our bounds clearly hold in the non-sequential fixed sample-size setting, as we can just fix a particular value
of k. Hence, adding the two extremal probabilities of error yields upper bounds on the minimax risk. Notably, the
proof of Theorem 5 requires us to develop a time-uniform version of the well-known Hanson-Wright inequality [50]
specialized for our setting (see Lemma 5 in Section VII-B). Additionally, as an intermediate step in the proof, we also
obtain time-uniform confidence intervals under the null hypothesis H0, as demonstrated in the following proposition.

Proposition 4 (Confidence Interval for T k1,k). Suppose ŵ is estimated as in (7) from the comparisons over k1 time-
steps. Then, there exists a constant c6 > 0 such that for all ν∈(0, 1/e) and k1∈N,

PH0

(
∃k ≥ 2, T k1,k ≥ ∥F(ŵ)− F(w∗)∥2F + c7

√
|E|ℓk,ν
k

+ 4∥F(ŵ)− F(w∗)∥F

√
ℓk,ν
k

)
≤ ν.

Proposition 4 is established in Section VII-B. We remark that the distribution of ∥F(ŵ) − F(w∗)∥F above can
be approximated either by leveraging the asymptotic normality of ŵ − w∗ [35], [36], or by utilizing bootstrapping
techniques; this gives (1−2ν) time-uniform confidence intervals. Additionally, the constant c7 here is also the constant
in our specialized version of Hanson-Wright inequality (noted above) and, for our setting, can be approximated via
simulations. An empirical investigation into estimating the constant c6 and the subsequent confidence intervals can be
found in Appendix B.

IV. PROOFS OF PROPOSITION 1 AND THEOREMS 1 AND 3
A. Additional Notation and Preliminaries

We begin by introducing some additional notations and discuss some necessary preliminaries that will used throughout
our proofs. To simplify our notation, we use l̂(w) to denote l(w; {p̂ij : (i, j) ∈ E}) where p̂ij are computed based on
the partitioned dataset Z1. Similarly, we use l∗(w) to denote l(w; {pij : (i, j) ∈ E}) where pij are the actual underlying
pairwise comparison probabilities. When w = w∗ or w = ŵ, we simplify the notation by using F and F̂ to denote
the matrices F(w∗) and F(ŵ) (cf. (4)) respectively, for brevity. We say that a random variable X is µ2-sub-Gaussian,
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if it satisfies the condition, log(E[exp(sX)]) ≤ µ2s2/2 for all s ∈ R. Notably, ŵ is computed as in (7) even though
the data may not conform to an underlying TF model. Throughout the appendices, we denote various constants using
overlapping labels, such as c, c1, c2, . . . to simplify our notation and facilitate readability. Moreover, we define E+ to
denote the set {(i, j) ∈ E : j > i}.

1) Prelimiaries: Recall that, as defined in (8), w∗ represents the weights of a TF model that best approximates the
pairwise comparison model {pij , (i, j) ∈ E}. Now, we show that any pairwise comparison model can be converted into
its skew-symmetric counterpart

{
pij+1−pji

2 , (i, j) ∈ E
}

such that both of them share the same optimal weights.

Lemma 1 (Skew-Symmetrized Model). For a symmetric edge set E , the pairwise model {pij : (i, j) ∈ E} and and its
skew-symmetric counterpart

{
pij+1−pji

2 : (i, j) ∈ E
}

has the have the same optimal TF weights w∗ as defined in (8).

Proof. Note that the weighted negative log-likelihood objective can be written as

l∗(w) = argmin
w∈W:wT1=0

−
∑

(i,j)∈E

pij log(F (wi − wj)) + (1− pij) log(1− F (wi − wj))

ζ1
= argmin

w∈W:wT1=0

−
∑

(i,j)∈E

pij log(1− F (wj − wi)) + (1− pij) log(F (wj − wi))

ζ2
= argmin

w∈W:wT1=0

−
∑

(i,j)∈E

(
pij + 1− pji

2

)
log(F (wi − wj)) +

(
1− pij + pji

2

)
log(F (wj − wi))

where ζ1 follows since F (−x) = 1−F (x) and ζ2 follows by adding the first two equations and dividing by two.

Therefore, for any pairwise comparison model {pij : (i, j) ∈ E}, we can define its skew-symmetrized counterpart
{qij : (i, j) ∈ E}, where:

∀ (i, j) ∈ E , qij ≜
pij + 1− pji

2
. (16)

We call these transformed probabilities qij as skew-symmetrized probabilities because we have qij + qji = 1, and
thereby this transformation effectively removes any distinctions between “i vs. j” and “j vs. i” comparisons. Also,
note that for any pairwise comparison model satisfying Assumption 1 its skew-symmetrized model also satisfies it. In
a similar manner, we can define q̂ij =

p̂ij+1−p̂ji

2 as the skew-symmetrized version of the empirical probabilities. With
this notation in place, we are ready to state the proof of Proposition 1 below.

B. Proof of Proposition 1

Uniqueness. The uniqueness of w follows directly from the strong log-concavity of F (·). This is because if v∗, w∗ ∈
Wb are any two non-unique solutions of (8) such that l∗(v∗) = l∗(w∗), then by strong log concavity of F and the fact
that qij > 0 for (i, j) ∈ E along with connectedness of graph, for any θ ∈ (0, 1), we have

θl∗(v∗) + (1− θ)l∗(w∗) = −2θ
∑

(i,j)∈E

qij log
(
F
(
v∗i − v∗j

))
− 2(1− θ)

∑
(i,j)∈E

qij log
(
F (w∗

i − w∗
j )
)

> −2
∑

(i,j)∈E

qij log
(
F
(
θ
(
v∗i − v∗j

)
+ (1− θ)

(
w∗

i − w∗
j

)))
= l∗(θv∗ + (1− θ)w∗).

This gives a contradiction since θv∗+(1−θ)w∗ achieves a higher likelihood (or a lower objective value). The existence
of w∗ under Assumption 1 and finite b follows since the optimization of convex function is being performed over a
compact set. Below we show a proof of existence even when the parameter b = ∞.

Existence. Now, we will utilize the connectedness of graph G and Assumption 1 to show the existence of w∗. Define
a sequence {w(m) ∈ Rn : m ∈ N ∪ {0}} as the

w(m) = argmin w1=0:
∥w∥∞≤m

l∗(w).

Clearly w(m) exists as the optimization of a convex function l∗(·) is being performed over a compact set. Define the
following sets as the components of w that potentially diverge to ∞:

S+ =

{
i ∈ [n] : lim sup

m

(
w(m)

)
i
= +∞

}
, S− =

{
i ∈ [n] : lim inf

m

(
w(m)

)
i
= −∞

}
.
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We will show that S+ = S− = ∅. Notably, if S+ ̸= ∅, then we consider the partition of [n] as S+ ∪ Sc
+. Clearly,

1 ∈ Sc
+ ̸= ∅. Since the observation graph G is connected, for some i ∈ S+ there exists j ∈ Sc

+ such that qji > 0 (by
Assumption 1). This implies that −qji log

(
F (w

(m)
j − w

(m)
i )

)
→ +∞ as m → +∞. Hence, we can find a constant

A > 0 such that on the set {wi − wj ≥ A}, we have

−qji log(F (wi − wj)) > l∗(w(0)).

Equivalently, for any w with wi − wj > A, we have

l∗(w) ≥ −qji log(F (A)) > l∗(w(0)) ≥ l∗(w(m)),

where the first inequality follows since each term in l∗(·) is non-negative. Therefore, we must have w
(m)
i ≤ w

(m)
j +A

for all k ∈ N. Since i ∈ S+, it follows that j ∈ S+ by definition, which contradicts the assumption that j ∈ Sc
+.

Hence, we conclude that S+ = ∅. A similar argument shows that S− = ∅. The fact that S+ = S− = ∅ implies that
the sequence {w(m) : m ∈ N ∪ {0}} admits a convergent subsequence, which proves the existence of w∗.

Limitations of our assumptions. Both GTM and pairwise comparison models assume that different comparisons
between the agents are independent and the comparison probabilities remain constant over time. However, this is rarely
the case in real-world settings, where comparisons are often correlated and the underlying probabilities evolve with
time. Secondly, our testing framework assumes the existence of parameters δ in Assumption 1 about the true comparison
probabilities. However, such constants are typically unknown in practice and selected based on intuition. Third, it is
not clear how large should the parameter b be as compared to F−1(1−δ)/2 so that it allows us to estimate the weights
from empirical probabilities p̂ij , without introducing ‘biases’ towards smaller values and at the same time being large
enough to give a reasonable approximation of separation distance with b = ∞.

C. Proof of Theorem 1
The upper bound is trivial to prove

inf
w∈Wb

∥P − F(w)∥F ≤ ∥P − F(w∗)∥F = ∥P − F∥F,

where F is the pairwise probability matrix associated with the optimal weights. Now to prove the lower bound, observe
that

inf
w∈Wb

∑
(i,j)∈E

(pij − F (wi − wj))
2

≥ inf
w∈Wb

F (−2b)(1− F (−2b))
∑

(i,j)∈E

(pij − F (wi − wj))
2

F (wi − wj)(1− F (wi − wj))

ζ1
= c inf

w∈Wb

∑
(i,j)∈E

χ2(Bernoulli(pij)∥Bernoulli(F (wi − wj)))

ζ2
≥ c inf

w∈Wb

∑
(i,j)∈E

DKL(Bernoulli(pij)∥Bernoulli(F (wi − wj)))

= c inf
w∈Wb

∑
(i,j)∈E

pij log

(
pij

F (wi − wj)

)
+ (1− pij) log

(
1− pij

1− F (wi − wj)

)
ζ3
= c

∑
(i,j)∈E

pij log

(
pij

F (w∗
i − w∗

j )

)
+ (1− pij) log

(
1− pij

1− F (w∗
i − w∗

j )

)
ζ4
≥ 2c

∑
(i,j)∈E

∥Bernoulli(pij)− Bernoulli(F (w∗
i − w∗

j ))∥2TV

= 2c
∑

(i,j)∈E

(pij − F (w∗
i − w∗

j ))
2,

where, in ζ1 we set c = F (−2b)(1− F (−2b)) and χ2(·||·) denotes the χ2-divergence between two Bernoulli random
variables and in ζ2 we utilize the fact that χ2(R||Q) ≥ DKL(R||Q) for two distributions R and Q and where DKL(·||·)
denotes the Kullback-Leibler (KL) divergence between two distributions, ζ3 follows since w∗ are the optimal weights
maximizing (8) for the TF model. Finally, ζ4 follows by Pinsker’s inequality, DKL(R||P ) ≥ 2∥R−P∥2TV, and thereby
completes the proof.
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D. Proof of Theorem 3

We begin by recalling the definition of ŵ ∈ argminw∈Wb
l̂(w) in terms of the symmetrized probabilities qij defined

in (16) as
l̂(w) = −2

∑
(i,j)∈E+

q̂ij logF (wi − wj) + (1− q̂ij) log(1− F (wi − wj)).

Observe that since ŵ is an optimal solution and w∗ is a feasible point for the problem in (7), therefore we have
l̂(ŵ) ≤ l̂(w∗). Moreover, since w∗ is the optimal solution of a convex function l∗(w), therefore we have the optimality
condition ∇l∗(w∗)T(w − w∗) ≥ 0 for all w ∈ Wb. Now, by subtracting the quantity ∇l̂(w∗)T(ŵ − w∗) from both
sides of l̂(ŵ) ≤ l̂(w∗) gives

l̂(ŵ)− l̂(w∗)−∇l̂(w∗)T(ŵ − w∗) ≤ −∇l̂(w∗)T(ŵ − w∗) (17)
ζ1
≤ −(∇l̂(w∗)−∇l∗(w∗))T(ŵ − w∗)
ζ2
≤ ∥∇l̂(w∗)−∇l∗(w∗)∥L†∥ŵ − w∗∥L, (18)

where ζ1 follows since ∇l∗(w∗)T(w − w∗) ≥ 0 for all w ∈ W and ζ2 follows from [14, Lemma 16] where ∥ · ∥L is
the semi-norm induced by the Laplacian matrix L of graph G and L† is the Moore-Penrose pseudoinverse of L. Now
observe that by chain rule, the Hessian of l̂ is given by

∇2 l̂(w) = −2
∑

(i,j)∈E+

(
q̂ij

d2

dt2
log(F (t))|t=wTxij

+ (1− q̂ij)
d2

dt2
log(1− F (t))|t=wTxij

)
xijx

T
ij ,

Since by our assumption that F (t) is α-strongly log-concave on the set [−2b, 2b], this implies − d2

dt2 log(F (t)) ≥ α.
Moreover, since F (−t) = 1 − F (t), we also have − d2

dt2 log(1− F (t)) ≥ α for all t ∈ [−2b, 2b]. Therefore, for any
v ∈ Rn with vT1 = 0, we have

vT∇2ℓ̂(w∗)v ≥ 2α∥Xv∥22 = 2α∥v∥2L.

Thus, by definition of strong-convexity, the left side of (17) can be lower bounded by α∥ŵ−w∗∥2L. Therefore, utilizing
the bound in (18), we obtain the following inequality

α∥ŵ − w∗∥2L ≤ ∥∇l̂(w∗)−∇l∗(w∗)∥L†∥ŵ − w∗∥L.

Cancelling ∥ŵ − w∗∥L leads to the following error bound on ∥ŵ − w∗∥L as

∥ŵ − w∗∥L ≤ 1

α
∥∇l̂(w∗)−∇l∗(w∗)∥L† . (19)

Since, both ŵ, w∗ satisfy ŵT1 = 0 and w∗T1 = 0, this yields the following upper bound on ∥ŵ − w∗∥L

∥ŵ − w∗∥2L ≤ 1

α2
∥∇l̂(w∗)−∇l∗(w∗)∥2L† . (20)

Now, it remains to bound the term ∥∇l̂(w∗)−∇l∗(w∗)∥L† . Note that we can express the respective quantities as:

∇l̂(w∗) = −2
∑

(i,j)∈E+

(
q̂ij

F ′(w∗Txij)

F (w∗Txij)
− (1− q̂ij)

F ′(w∗Txij)

1− F (w∗Txij)

)
xij

= −2
∑

(i,j)∈E+

(q̂ij − F (w∗
i − w∗

j ))F
′(w∗

i − w∗
j )

F (w∗
i − w∗

j )(1− F (w∗
i − w∗

j ))
xij , (21)

∇l∗(w∗) = −2
∑

(i,j)∈E+

(qij − F (w∗
i − w∗

j ))F
′(w∗

i − w∗
j )

F (w∗
i − w∗

j )(1− F (w∗
i − w∗

j ))
xij . (22)

Therefore, subtracting the two equations gives

∇l̂(w∗)−∇l∗(w∗) = −2
∑

(i,j)∈E+

(q̂ij − qij)F
′(w∗

i − w∗
j )

F (w∗
i − w∗

j )(1− F (w∗
i − w∗

j ))
xij = −2XTv, (23)
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where v ∈ R|E|/2 is a vector formed by entries vij for (i, j) ∈ E+. and quantities vij are defined as

vij ≜ (q̂ij − qij)×
F ′(w∗

i − w∗
j )

F (w∗
i − w∗

j )(1− F (w∗
i − w∗

j ))
.

Note that the entries of the vector v are independent and have a mean of zero. Furthermore, we also have:

sup
x∈[−2b,2b]

F ′(x)

F (x)(1− F (x))
≤ β

F (−2b)(1− F (−2b))
≜ β̃.

Additionally, for any (i, j) ∈ E+, an application of the Hoeffding’s inequality on q̂ij − qij yields the following tail
bound

∀ t > 0, P(|q̂ij − qij | > t) = P
(

1

2k

∣∣∣∣ k∑
m=1

(Zm
ij − pij) +

k∑
m=1

(Zm
ji − pji)

∣∣∣∣ > t

)
≤ 2 exp

(
−2kt2

)
.

Consequently, v is a vector whose each entry is independent with zero mean and β̃2

4k -sub-gaussian. Now, observe that
we can express ∥∇l̂(w∗)−∇l∗(w∗)∥2L† in quadratic form as

∥∇l̂(w∗)−∇l∗(w∗)∥2L† = 4vTXL†XTv. (24)

Now, combining (20) and (24) we can upper-bound E[∥ŵ − w∗∥2L] as

E[∥ŵ − w∗∥2L] ≤
1

α2
E[∥∇l̂(w∗)−∇l∗(w∗)∥2L† ]

=
4

α2
E[vTXL†XTv]

≤ β̃2

kα2
tr
(
XL†XT

)
=

(n− 1)β̃2

kα2
, (25)

where tr denotes the trace operator and we have tr
(
XL†XT

)
= tr

(
L†XTX

)
= tr

(
L†L

)
= n − 1. Hence, by an

application of Hanson-Wright inequality [50] combined with usage of (20) and (24) as above, we have the following
concentration bounds on ∥ŵ − w∗∥2L as

∀t > 0,P
(
∥ŵ − w∗∥2L − nβ̃2

kα2
> t

)
≤2 exp

(
−cmin

{
t2k2α4

β̃4∥XL†XT∥2F
,

tkα2

β̃2∥XL†XT∥2

})

= 2 exp

(
−cmin

{
t2k2α4

β̃4(n− 1)
,
tkα2

β̃2

})
.

Hence, by a simple calculation, we can conclude that for some universal constant c, we have

for all t ≥ 1, P
(
∥ŵ − w∗∥2L > t

cnβ̃2

kα2

)
≤ e−t. (26)

Bounding the pth moment. Let A denote the quantity: A =
√
cnβ̃2/kα2. Now the bound on the pth moment is

obtained by integration and utilizing the tail bound in (26) as

E[∥ŵ − w∗∥pL] = p

∫ ∞

0

tp−1P(∥ŵ − w∗∥L > t) dt

= p

∫ A

0

tp−1P(∥ŵ − w∗∥L > t) dt+ p

∫ ∞

A

tp−1P(∥ŵ − w∗∥L > t) dt

≤
∫ A

0

tp−1 dt+ p

∫ ∞

1

(At)p−1P(∥ŵ − w∗∥L > tA)A dt

≤ Ap + pAp

∫ ∞

0

tp−1e−
√
t ≤ c(p)Ap.

Substituting the value of A in the above expression completes the proof.
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V. PROOF OF THEOREM 2

We begin by recalling the test statistic T from (15) as

T =
∑

(i,j)∈E

Zij(Zij − 1)

k′ij(k
′
ij − 1)

+ F (ŵi − ŵj)
2 − 2Zij

k′ij
F (ŵi − ŵj).

where ŵ is calculated based on the data in Z1 and Zij are calculated based on the data in Z2. The expected value of
T conditioned on the weights ŵ or equivalently conditioned on the data Z1 is given by

E[T | Z1] =
∑

(i,j)∈E

E

[
Zij(Zij − 1)

k′ij(k
′
ij − 1)

|Z1

]
+ F (ŵi − ŵj)

2 − 2E

[
Zij

k′ij
| Z1

]
F (ŵi − ŵj)

ζ
=

∑
(i,j)∈E

p2ij + F (ŵi − ŵj)
2 − 2pijF (ŵi − ŵj)

=
∑

(i,j)∈E

(pij − F (ŵi − ŵj))
2, (27)

where in ζ we have utilized the fact that E
[
Zij(Zij−1)
k′
ij(k

′
ij−1) |Z1

]
= p2ij . Hence, the expected value of T is given by

E[T ] = E[E[T |Z1]] =
∑

(i,j)∈E

E[(pij − F (ŵi − ŵj))
2]

=
∑

(i,j)∈E

(pij − F (w∗
i − w∗

j ))
2 + E[(F (w∗

i − w∗
j )− F (ŵi − ŵj))

2]

+ 2E[(pij − F (w∗
i − w∗

j ))(F (w∗
i − w∗

j )− F (ŵi − ŵj))]

≤ ∥P − F∥2F + E[∥F− F̂∥2F] + 2∥P − F∥FE[∥F− F̂∥F], (28)

where F, F̂ ∈ Rn×n are matrices defined in Section IV-A. In order to find bounds on estimation error (such as terms
like E[∥F− F̂∥pF]), we will utilize our simplifying assumption that kij = 2k for all (i, j) ∈ E . Now the ensuing lemma
provides the bounds on the pth moments E[∥F− F̂∥pF].

Lemma 2 (pth Moment Bound). For matrices F and F̂ defined as in Section IV-A, there exists constant cp possibly
dependent on p, α, β, b such that the following bound hold on the pth moment of Frobenius norm E

[
∥F− F̂∥pF

]
, for

p ≥ 1

E
[
∥F− F̂∥pF

]
≤ cp

(n
k

)p/2
.

Moreover, there exists constant c such that we have the following tail bound for all, t ≥ 1

P
(
∥F− F̂∥2F ≥ t

cn

k

)
≤ e−t.

The proof is provided later in Section V-A. Thus, utilizing Lemma 2 and (28), we have obtain the following bound
for some constant c1 and c2:

E[T ] ≤ ∥P − F∥2F + c2
n

k
+ 2c1

√
n

k
∥P − F∥F.

Let EH0
[·] and EH1

[·] denote the expectation operators under hypotheses H0 and H1, respectively. In essence, we have
established the following bounds on EH0 [T ]:

|EH0 [T ]| ≤ c2
n

k
, (29)

In a similar manner, we can obtain complementary lower bounds on EH1
[T ] (cf. (28)). Consequently, we have the

following lower bound on EH1
[T ]:

EH1
[T ] ≥ ∥P − F∥2F − 2c1

√
n

k
∥P − F∥F. (30)

Bounding variance. Now we will find bounds on var(T ) under the two hypotheses. For this, we will make use of
the law of total variance by conditioning T with respect to Z1 as

var(T ) = E[var(T | Z1)] + var(E[T | Z1]). (31)
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First, we will examine the term E[var(T |Z1)]. Note that conditioned on Z1, the term F (ŵi− ŵj)
2 is constant and does

not contribute to var(T |Z1). Moreover, Zij for (i, j) ∈ E are mutually independent, and hence, we can analytically
find the expression for var(T |Z1) as

var(T | Z1)
ζ1
=

∑
(i,j)∈E

var

(
Zij(Zij − 1)

k′ij(k
′
ij − 1)

)
+ 4F (ŵi − ŵj)

2var

(
Zij

kij

)

− 4F (ŵi − ŵj)

(
E
[
Z2
ij(Zij − 1)

]
(k′ij)

2(k′ij − 1)
− E[Zij(Zij − 1)]

k′ij(k
′
ij − 1)

E[Zij ]

k′ij

)
ζ2
=

∑
(i,j)∈E

2p2ij + 4(k′ij − 2)p3ij + (6− 4k′ij)p
4
ij

k′ij(k
′
ij − 1)

+
4F 2(ŵi − ŵj)pij(1− pij)

k′ij

− 4F (ŵi − ŵj)
2(p2ij − p3ij)

k′ij
,

where ζ1 follows from the variance of sum technique and ζ2 follows from the expressions for the first four moments
of Binomial random variables and some basic algebra. Now, in order to bound E[var(T | Z1)], we will substitute all
k′ij = k for all (i, j) ∈ E and simplify the above expression as:

E[var(T | z1)] =
∑

(i,j)∈E

2p2ij − 4p3ij + 2p4ij
k(k − 1)

+ pij(1− pij)

(
4p2ij
k

+
4E[F 2(ŵi − ŵj)]

k
− 8E[F (ŵi − ŵj)]pij

k

)
=

∑
(i,j)∈E

2p2ij(1− pij)
2

k(k − 1)
+

4pij(1− pij)

k
(pij − E[F (ŵi − ŵj)])

2

≤ ndmax

8k(k − 1)
+

1

k
∥P − E[F̂]∥2F

≤ ndmax

8k(k − 1)
+

1

k
(∥P − F∥F + ∥F− E[F̂]∥F)2

≤ ndmax

8k(k − 1)
+

1

k
(∥P − F∥F + E[∥F− F̂∥F])2

≤ ndmax

8k(k − 1)
+

1

k

(
∥P − F∥F + c1

√
n

k

)2

, (32)

where the last inequality follows from Lemma 2. Now we will bound the second term of (31), i.e., var(E[T |Z1]).
Recall that by (27), we have E[T |Z1] =

∑
(i,j)∈E(pij − F (ŵi − ŵj))

2. Therefore, we upper bound var(E[T | Z1]) as

var(E[T | Z1]) = var

( ∑
(i,j)∈E

(pij − F (ŵj − ŵi))
2

)
= var(∥P − F̂∥2F)

= E[∥P − F̂∥4F]− E[∥P − F̂∥2F]2

≤ E[(∥P − F∥F + ∥F− F̂∥F)4]− E[(∥P − F∥F − ∥F− F̂∥F)2]2,

where the last inequality follows from triangle inequality in the first term and reverse triangle inequality on the second
term. Under hypothesis H0 the above expression simplifies trivially as

varH0
(E[T | Z1]) ≤ c4

(
n

k

)2

, (33)

where varHl
(·) denotes the variance under hypothesis l for l ∈ {0, 1}. Now, we turn our attention to bounding

varH1(E[T | Z1]). This bound can be established through a relatively mechanical process described as follows

varH1(E[T |Z1]) ≤ ∥P − F∥4F + 4∥P − F∥3FE[∥F− F̂∥F] + 6∥P − F∥2FE[∥F− F̂∥2F]
+ 4∥P − F∥FE[∥F− F̂∥3F] + E[∥F− F̂∥4F]
− (∥P − F∥2F + E[∥F− F̂∥2F]− 2∥P − F∥FE[∥F− F̂∥F])2

14



= 8∥P − F∥3FE[∥F− F̂∥F] + 4∥P − F∥2F(E[∥F− F̂∥2F]− E[∥F− F̂∥F]2)
+ 4∥P − F∥F(E[∥F− F̂∥3F] + E[∥F− F̂∥2F]E[∥F− F̂∥F])
+ E[∥F− F̂∥4F]− E[∥F− F̂∥2F]2

≤ 8c1∥P − F∥3F

√
n

k
+ 4c2∥P − F∥2F

n

k

4(c3 + c2c1)∥P − F∥F
(n
k

)3/2
+ c4

(n
k

)2
(34)

Thus, by combining Eqs. (32) and (33) and (34) we obtain the following bounds on varH0
(T ) and varH1

(T ) based
on (31)

varH0
(E[T ]) ≤ ndmax

8k(k − 1)
+ c21

n

k2
+ c4

(
n

k

)2

(35)

varH1
(E[T ]) ≤ ndmax

8k(k − 1)
+

1

k

(
∥P − F∥F + c1

√
n

k

)2

+ 8c1∥P − F∥3F

√
n

k

+ 4c2∥P − F∥2F
n

k
+ 4c̃3∥P − F∥F

(
n

k

)3/2

+ c4

(
n

k

)2

. (36)

We define the decision rule as follows: Select hypothesis H1 if the test statistic T exceeds the threshold γ̃ n
k + c2

n
k ,

i.e.,
T > γ̃

n

k
+ c2

n

k
, (37)

where γ̃ is a suitably chosen constant (selected below). Consequently, we can employ the one-sided Chebyshev’s
inequality to bound the probability of error under hypothesis H0, yielding:

PH0

(
T > γ̃

n

k
+ c2

n

k

)
= PH0

(
T − EH0

[T ] > γ̃
n

k
+ c2

n

k
− EH0

[T ]
)

≤ PH0
(T − EH0

[T ] > γ̃
n

k
)

≤ varH0
(T )

varH0(T ) + γ̃2(nk )
2

≤
ndmax

4k2 + c21
n
k2 + c4(

n
k )

2

ndmax

4k2 + c21
n
k2 + c4(

n
k )

2 + γ̃2(nk )
2

=
dmax

4n + c21
1
n + c4

dmax

4n + c21
1
n + c4 + γ̃2

≤ 1

4
,

where the last bound holds for an appropriate constant such as γ̃ ≥ max{4c4, 4, 4c1/
√
n}. This is because of the fact

that dmax ≤ n.
Now, we will find an upper bound on the probability of error under hypothesis H1. Observe that an error is made

under H1 if the value of the test statistic T ≤ γ̃ n
k + c2

n
k .

PH1

(
T ≤γ̃

n

k
+ c23

n

k

)
= PH1

(
T − EH1 [T ] ≤ γ̃

n

k
+ c2

n

k
− EH1 [T ]

)
ζ1
≤ P

(
T − EH1

[T ] ≤ γ̃
n

k
+ c2

n

k
+ 2c1

√
n

k
∥P − F∥F − ∥P − F∥2F

)
ζ2
≤ varH1

(T )

varH1(T ) + (D2 −∆)2

ζ3
≤ 1

4
,

where ζ1 follows from (30), ζ2 follows by one-sided Chebyshev inequality and defining D = ∥P − F∥F and ∆ =
γ̃ n

k + c2
n
k + 2c1

√
n
kD. The step ζ3 holds if 4varH1

(T ) ≤ (D2 − ∆)2 or equivalently if D2 ≥ 2
√
varH1

(T ) + ∆.
Using the sub-additivity of

√
· operator, the following condition necessitates that for this to be true:

D2 ≥ 2

(√
ndmax

2k
+

1√
k

(
D + c1

√
n

k

)
+ 2

√
2c1D

3/2

(
n

k

) 1
4

+ 2
√
c2D

√
n

k

15



+ 2
√
c̃3
√
D
(n
k

) 3
4

+ c4
n

k

)
+ γ̃

n

k
+ c2

n

k
+ 2c1

√
n

k
D.

Substituting D = a0
√

n
k in the above expression, for some constant a0, we obtain:

a20 ≥ 2√
2ndmax

+ 2(a0 + c1)

√
1

n
+ 4

√
2c1a

3/2
0 + 4

√
c2a0 + 4

√
2c̃3a0 + γ̃ + c2 + 2a0c1.

Again utilizing the fact that λ2(L) ≤ 2dmax, we can conclude that the above expression is true for some large enough
constant a0 independent of n and k, thus establishing that for D = a0

√
n
k and a0 large enough our decision rule achieves

a type I and type II sum error of at most 1/2. Utilizing Theorem 1 we obtain that infw∈Wb
∥P−F(w)∥F = Θ(∥P−F∥F).

Combining this fact along with the definition of critical threshold (cf. (14)), we have the following bound on εc:

εc ≤ O

(√
1

nk

)
.

This completes the proof.
Remarks. Notably, from the above result, we have that εc → 0 as n or k goes to infinity. Therefore, for any

fixed n and ϵ > 0, our decision rule is guaranteed to achieve a non-trivial minimax risk (strictly less than 1) for any
pairwise comparison model P in the class M0 or M1(ϵ) as long as the number of observed samples for each pair (i.e.
k) are sufficiently large. Moreover, there do exist pairwise comparison models {pij : (i, j) ∈ E} whose (normalized)
separation is constant with n. Consequently, for such models, we can argue that for any fixed k and n large enough, our
decision rule will achieve a non-trivial minimax risk. One such example of a pairwise comparison model represented
by its pairwise comparison matrix (on a complete graph) is

P =

(
1

2
+ η

)
(11T − I), for any η ∈

(
0,

1

2

)
.

It is easy to verify that for this comparison model, we must have infw∈Wb

1
n∥P − F(w)∥F ≥ η. This is because any

matrix F(w) must satisfy the constraint (F)ij +(F)ji = 1 for every i ̸= j, which immediately leads to the lower bound
of η on the separation distance.

A. Proof of Lemma 2

Observe that by definition of F and F̂, we have∑
(i,j)∈E

(F (w∗
i − w∗

j )− F (ŵi − ŵj))
2 ≤ β2

∑
(i,j)∈E

(|(w∗
i − w∗

j )− (ŵi − ŵj)|)2

≤ 4β2∥ŵ − w∗∥2L. (38)

Taking the power p/2 on both sides and then taking the expectation, we obtain

E[∥F− F̂∥pF] ≤ 2pβpE[∥ŵ − w∗∥pL] ≤ cp

(n
k

)p/2
,

where the last inequality follows by plugging in the bounds on pth moment from Theorem 3 and absorbing the constant
α, β in cp. The tail bound follows directly from (38).

VI. PROOFS OF THEOREM 4 AND PROPOSITION 2

A. Proof of Theorem 4

Without loss of generality, we assume that the graph G is Eulerian. If not, we can reduce the problem to an Eulerian
graph by considering the largest Eulerian-spanning subgraph G̃ of G so that every vertex of G̃ has even degree, which
exists by our assumption that G is super-Eulerian.

Under the null hypothesis, we assume that the pairwise comparison model P is a uniform distribution, i.e., pij =
1
2 ,∀ (i, j) ∈ E and let P0 denote the probability measure corresponding to this pairwise comparison model P . Under
the alternative hypothesis, we will set our pairwise comparison model R to be a perturbed version of the uniform
distribution (sharing the same observation graph G). Specifically, every perturbation will have the following property:

∀(i, j) ∈ E , rij =
1

2
+ ηbij , where η ∈

[
0,

1

2
− δ
]
, bij ∈{−1, 1}, bij + bji = 0, ∀i ∈ [n],
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and
∑

j:(i,j)∈E

bij = 0,∀i ∈ [n], (39)

where bij represents the signs of the perturbation by parameter η. Note that we set bij = 0 for (i, j) /∈ E . Let any such
sequence of perturbations bij is represented by a matrix B ∈ {−1, 0, 1}n×n.

As we delve deeper into the perturbation structure, we will carefully select a subset of perturbations B satisfying
the constraints in (39), as well as additional constraints to be specified later

B ⊆
{
bij ∈ {−1, 1} for (i, j) ∈ E : bij + bji = 0,

∑
j:(i,j)∈E

bij = 0,∀i ∈ [n]

}
. (40)

Based on this selection, under the alternative hypothesis, let the pairwise comparison model R be generated from a
mixture distribution such that R = P + ηB and B ∼ Unif(B), i.e., R is generated by adding the perturbation sequence
selected uniformly at random from B. Let PB denote the measure corresponding to the overall mixture distribution.

As we examine the perturbation structure, we make our first observation: for any perturbation B satisfying (39), the
corresponding pairwise comparison model R belongs to the class M1(ϵ), for some ϵ as a function of η. Specifically,
we will show that the perturbation B guarantees a minimum separation distance of ϵ from the class of M0.

Bounding separation. Our first observation is that any such perturbation R = P + ηB has a sufficiently large and
(more importantly a tractable) separation distance. In order to lower bound this separation distance we will utilize
Theorem 1. But first, we need to find the optimal TF weights w∗ (as in (8)). This is addressed in the following lemma.

Lemma 3 (Optimal Weights for Perturbed Matrix). For the TF model and for any B ∈ B defined as in (40), the
perturbed pairwise comparison matrix P + ηB has a unique optimal TF weights given by w∗ = 0 (all zeros vector).

The proof is provided later in Section VI-C. We now utilize Theorem 1 to obtain the following lower bound on
separation distance as

inf
w∈Wb

∥P + ηB − F(w)∥F ≥ c1∥P + ηB − F(0)∥F

= c1η
√
|E|

where c1 is the lower bound constant in Theorem 1 and the last equality follows sinde (P )ij = (F(0))ij = 1/2 for all
(i, j) ∈ E . Therefore, we have nϵ ≥ c1η

√
|E| by definition of M1(ϵ).

Having established a lower bound on the separation distance for each of the perturbations, our next step is to carefully
select a special subset B of perturbations that allows us to approximate the “degrees of freedom” in the structure of
our perturbation set, while also taking into account the constraints imposed by the graph topology.

To this end, we leverage the assumption that our observation graph G is Eulerian, meaning every node has an even
degree. This property enables us to decompose G into a collection of edge-disjoint cycles, denoted by C. In addition, we
introduce a comparison incidence graph GI , which represents the comparison structure as an undirected bipartite graph.
This graph has n item nodes on one side and |E|/2 nodes on the other side, each representing a pairwise comparison
(i, j) ∈ E for j > i. The edges in GI connect items to their respective comparison nodes. Since every node in G has
an even degree, this ensures that the incidence graph GI is Eulerian, and therefore GI also has a cycle decomposition
denoted by CI . Notably, each cycle in GI is of even length and we can establish a one-to-one correspondence between
the cycles in C and CI . Now, we orient the edges in the undirected comparison incidence graph GI based on the values
bij in the perturbation B. Specifically, we will orient the edges in GI as follows: if bij = 1, the edge will point from
the item node to the comparison node for pair (i, j), and if bij = −1, the edge will have the opposite direction. The
constraints in (40) ensure that each node in GI has equal in-degree and out-degree.

To specify the construction of B, we consider any fixed cycle decomposition CI (since it may not be unique). Let
the number of cycles in the cycle decomposition be denoted by |CI |. Let σi ∈ CI represents the ith cycle in CI and
|σi| denotes the length of this ith cycle. Observe that, we can independently orient the edges of any cycle σi ∈ CI in
either clockwise or counterclockwise direction yielding 2|CI | distinct Eulerian orientations for GI . We then construct
the structured collection of perturbations B by associating each perturbation with one of the 2|CI | distinct Eulerian
orientations of the cycle decomposition CI . This establishes a one-to-one correspondence between valid perturbation
in B and distinct Eulerian orientations of CI . Thus, in summary we define B correspoding to decomposition CI as

B ≜

{
bij ∈ {−1, 1} : bij + bji = 0,∀(i, j) ∈ E ,

∑
j:(i,j)∈E

bij = 0,∀i ∈ [n],

|bl − bl+1| = 2,∀l ∈ σi,∀σi ∈ CI
}
,
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where, l is used for indexing sequential edges of the cycle σi.
Bounding risk. Now, we will utilize the Ingster-Suslina method to compute lower bound on R(G, ϵ) (cf. (13)). The

standard testing inequality by Le-Cam [46] states that

R(G, ϵ) ≥ 1− ∥P0 − PB∥TV ≥ 1−
√

χ2(PB||P0). (41)

We calculate the chi-squared divergence χ2(P0||PB) by expressing it as an expectation with respect to two independent
pairwise models corresponding to permutation B and B′ drawn independently and uniformly at random from B as

χ2(PB||P0) = EB,B′∼Unif(B)

[∫
dPBdPB′

dP0

]
.

We will now leverage the tensorization property of 1+χ2(P ||Q) which enables us to decompose the chi-squared diver-
gence between product distributions into a product of individual divergences. Specifically, for distributions P1, Q1, . . . ,
Pn, Qn, we have

1 + χ2

(
n∏

i=1

Pi

∣∣∣∣∣
∣∣∣∣∣

n∏
i=1

Qi

)
=

n∏
i=1

(1 + χ2(Pi||Qi)).

Consequently, the χ2-divergence χ2(PB||P0) simplifies as

1 + χ2(PB||P0) =

EB,B′∼Unif(B)

[ ∏
(i,j)∈E

( k∑
m=0

(
k
m

)
( 12 + ηbij)

m( 12 − ηbij)
k−m

(
k
m

)
( 12 + ηb′ij)

m( 12 − ηb′ij)
k−m(

k
m

)(
1
2

)k )]

= EB,B′∼Unif(B)

[ ∏
(i,j)∈E

( k∑
m=0

(
k
m

)
( 12 + ηbij)

m( 12 − ηbij)
k−m( 12 + ηb′ij)

m( 12 − ηb′ij)
k−m(

1
2

)k )]
. (42)

We direct our attention to the (i, j)th term of the product in (42), for (i, j) ∈ E and denote it as h(bij , b
′
ij)

h(bij , b
′
ij) =

k∑
m=0

(
k
m

)
( 12 + ηbij)

m( 12 − ηbij)
k−m( 12 + ηb′ij)

m( 12 − ηb′ij)
k−m(

1
2

)k . (43)

Now since we have bij , b
′
ij ∈ {−1, 1}, therefore whenever bij and b′ij agree, by (43) we have h(1, 1) = h(−1,−1).

And moreover, we can calculate h(1, 1) as

h(1, 1) = 2k
k∑

m=0

(
k

m

)(
1

2
+ η

)2m(
1

2
− η

)2k−2m

= 2k
k∑

m=0

(
k

m

)(
1

4
+ η2 + η

)m(
1

4
+ η2 − η

)k−m

=
(
1 + 4η2

)k k∑
m=0

(
k

m

)(
1

2
+

η
1
2 + 2η2

)m(
1

2
− η

1
2 + 2η2

)k−m

= (1 + 4η2)k.

Additionally, by (43) we also have h(1,−1) = h(−1, 1) and it simplifies to

h(1,−1) = 2k
k∑

m=0

(
k

m

)(
1

2
+ η

)2k(
1

2
− η

)2k

= (1− 4η2)k.

For any two perturbations B,B′ ∼ Unif(B), let random variables A1 denotes the number of agreements between B,B′

respectively, i.e., number of (i, j) ∈ E+ where bij = b′ij in randomly drawn permutation B and B′. And similarly let
A2 denotes the number of disagreements between B,B′ i.e., number of (i, j) ∈ E+ where bij = −b′ij . Consequently,
we obtain

1 + χ2(PB||P0) = EB,B′∼Unif(B)

[
h(1, 1)

2A1h(1,−1)
2A2

]
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= EB,B′∼Unif(B)

[
(1 + 4η2)2kA1(1− 4η2)2kA2

]
≤ EB,B′∼Unif(B)

[
exp
(
8η2k(A1 −A2)

)]
. (44)

In addition, we define vectors a, a′ ∈ {−1, 1}|CI | to represent the orientations of the |CI | cycles in GI induced by
B. The subsequent calculation will now be used to complete the proof:

χ2(PB||P0) + 1
ζ1
≤ 1

22|CI |

∑
B,B′

exp
(
8η2k(A1 −A2)

) ζ2
=

1

22|CI |

∑
a,a′

exp

(
8η2k

∑
σi∈CI

|σi|aia′i

)

= E

[ ∏
σi∈CI

exp
(
8η2k|σi|aia′i

)] ζ3
=
∏

σi∈CI

E
[
exp
(
8η2k|σi|aia′i

)]
=
∏

σi∈CI

(
1

2
exp
(
8η2k|σi|

)
+

1

2
exp
(
−8η2k|σi|

))

≤
∏

σi∈CI

(
exp
(
32η4k2(|σi|)2

))
= exp

(
32η4k2

∑
σi∈CI

|σi|2
)
,

where ζ1 follows from (44) and the fact that there are 2|CI | perturbations which are sampled uniformly from B, ζ2
follows from definition of ai and the fact that number of agreements/disagreements can be represented in terms of the
agreements/disagreements of the cycle orientations ai, a

′
i. ζ3 follows from the fact that the orientations of the cycles

are independent of one another. Finally, utilizing the fact that c1η
√
|E| ≤ nϵ and by combining the resulting bound

along with (41) and the fact that cycle lengths in GI are twice the size in G completes the proof.

B. Proof of Proposition 2

Part 1. For a complete graph, the comparison incidence graph GI has n item nodes and n(n−1)
2 comparison nodes.

When n is odd, all nodes have an even degree equal to n− 1, therefore G is Eulerian. Notably, n can take the forms
n = 6m + 1, n = 6m + 3, and n = 6m + 5, where m ∈ N. As established by Kirkman [51], for n = 6m + 1
and n = 6m + 3, G can always be decomposed into cycles of length 3. Meanwhile, for n = 6x + 5, G can be
decomposed into a cycle of length 4 and remaining cycles of length 3 [52]. Therefore, we have |E|2 = O(n4) and∑

σ∈C |σ|2 = O(n2), giving ε2c = Ω(1/nk)
Part 2. For graphs comprising a single cycle, it is easy to verify that the number of cycles is 1 and the cycle has a

length of n.
Part 3. Consider a d-regular graph with even degree d. The associated comparison incidence graph has n item nodes

and nd/2 comparison nodes. By applying [40, Lemma 9], we can decompose the edge set of the comparison incidence
graph into cycles of size at most ⌊2 log2(n)⌋, with at most min{2n+nd, 4n} = 4n edges remaining. Since the graph is
Eulerian, removing cycles does not affect this property. Therefore, the remaining 4n edges can be further decomposed
into cycles of length at most 2n (since cycles can have a maximum length of 2n and this reflects a worst-case scenario).
This yields

∑
σ∈C |σ|2 = O(n2), which in turn implies ε2c = Ω(1/n2k).

Part 4. For a toroidal grid of size
√
n×

√
n, we can generate a cycle decompostion of G consisting of

√
n horizontal

edges and
√
n vertical edges. Clearly, each of these edges have a length of

√
n. Therefore,

∑
σi∈C |σi|2 = 2n

√
n. And

since it is a toroidal grid we have |E| = 2n. Plugging in these values we obtain ε2c = Ω(1/n7/4k).

C. Proof of Lemma 3

In order to find the optimal weights w∗, our objective is to solve the following optimization problem with parameter
b :

l∗(w) = min
w∈Wb

−
∑

(i,j)∈E

rij log(F (wi − wj)) + (1− rij) log(1− F (wi − wj)).

Our initial observation is that, due to the skew-symmetrization of the model rij + rji = 1, we can express the gradient
of l∗(w) as:

(∇l∗(w))i = −2
∑

j:(i,j)∈E

(rij − F (wi − wj))×
F ′(wi − wj)

F (wi − wj)(1− F (wi − wj))
.
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Furthermore, it is evident that the gradient is zero at w = 0. To see this, note that for all i ∈ [n], we have:

(∇l∗(w))i|w=0 = −2
∑

j:(i,j)∈E

(
1

2
+ ηbij − F (0))× F ′(0)

F (0)(1− F (0))
= −8ηF ′(0)

∑
j:(i,j)∈E

bij = 0,

where the last step is followed by our construction of perturbation sequence in (39). Considering that the gradient is
zero at w = 0 and the optimization objective is convex over Wb (in fact strongly convex over Wb), coupled with the
uniqueness of the optimal TF weights as indicated by Proposition 1, we conclude that w∗ = 0 is indeed the optimal
and unique solution for any b ≥ 0.

VII. PROOF OF TIME-UNIFORM BOUNDS ON TYPE I AND TYPE II ERROR PROBABILITIES

In this appendix, we will establish bounds on type I and type II error probabilities as described in Theorem 5.
First, we will introduce essential notation to facilitate our analysis and present our proof of Proposition 3. Then, we
will establish a few auxiliary lemmata such as which are needed to derive the bounds on type I and type II error
probabilities. Finally, combining these results, we will prove Theorem 5 in Section VII-C and a few corollaries based
on these results in Appendix A.

Additional notation. We introduce Y l
ij for l ∈ N and (i, j) ∈ E to denote the observed comparisons that are used

for estimating Zij =
∑k2

l=1 Z
k1+l
ij , i.e., we let Y l

ij = Zk1+l
ij for l ∈ [k2]. Also, define the statistic Ȳ k

ij ≜
∑k

m=1 Y
m
ij .

Moreover, define 1n as the all ones vector of length n and In as the identity matrix of size n× n.

A. Proof of Proposition 3

We will focus on the following sequence {T̃ k
ij , k ∈ N \ 1} defined as

T̃ k
ij ≜

Ȳ k
ij

(
Ȳ k
ij − 1

)
k(k − 1)

+ b2ij − 2bij
Ȳ k
ij

k
.

Note that with bij = F (ŵi − ŵj), the term T̃ k
ij reduces to the (i, j)th term of the test-statistic T k1,k (based on the

notation defined above) and we will now show that it is indeed a reverse martingale. To do this, we will demonstrate

that both the terms
Ȳ k
ij(Ȳ

k
ij−1)

k(k−1) and
Ȳ k
ij

k are indeed reverse martingales. First, we focus on the former term. Observe
that we can write the product Ȳ k

ij

(
Ȳ k
ij − 1

)
as

Ȳ k
ij

(
Ȳ k
ij − 1

)
k(k − 1)

=
(
∑k

m=1 Y
m
ij )

2 −
∑k

m=1 Y
m
ij

k(k − 1)
=

1

k(k − 1)

k∑
l,m=1:l ̸=m

Y l
ijY

m
ij ,

where the last equality follows because
∑k

m=1 Y
m
ij

(
Y m
ij − 1

)
= 0 as Y m

ij ∈ {0, 1}. Also, observe that E
[
Y m
ij Y

l
ij | Fk+1

]
= E

[
Y m
ij Y

r
ij | Fk+1

]
for l ̸= m ̸= r and where Fk is the canonical reverse filtration defined as the σ-algebra generated

by Fk =
⊗

(i,j)∈E σ

(
Ȳ k
ij

k , Y k+1
ij , Y k+2

ij , . . .

)
. This is because for any set A ∈ Fk+1 and l,m, r ∈ [k] and l ̸= m ̸= r,

we have
E
[
Y m
ij Y

l
ij1A

]
= E

[
Y m
ij Y

r
ij1A

]
and E

[
Y m
ij 1A

]
= E

[
Y l
ij1A

]
.

Utilizing the above relations, we can show that
Ȳ k
ij(Ȳ

k
ij−1)

k(k−1) is indeed a reverse-martingale as:

E

[
Ȳ k
ij

(
Ȳ k
ij − 1

)
k(k − 1)

| Fk+1

]
= E

[∑k
l,m=1:l ̸=m Y l

ijY
m
ij

k(k − 1)
| Fk+1

]
=

∑k+1
l,m=1:l ̸=m E

[
Y l
ijY

m
ij | Fk+1

]
k(k − 1)

= E

[∑k+1
l,m=1:l ̸=m Y l

ijY
m
ij

k(k + 1)
| Fk+1

]
= E

[
Ȳ k+1
ij

(
Ȳ k+1
ij − 1

)
k(k + 1)

|Fk+1

]

=
Ȳ k+1
ij

(
Ȳ k+1
ij − 1

)
k(k + 1)

,

where the last equality follows since Ȳ k+1
ij is measurable with respect to Fk+1. Similarly, we can also show that

Ȳ k
ij

k
is also a reverse martingale as:

E

[
Ȳ k
ij

k
|Fk+1

]
=

∑k
m=1 E

[
Y m
ij | Fk+1

]
k

=

∑k
m=1 E

[
Y m
ij | Fk+1

]
k + 1
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= E

[
Ȳ k+1
ij

k + 1
|Fk+1

]
=

Ȳ k+1
ij

k
.

Finally, the proposition follows by the linearity of conditional expectation and substituting bij = F (ŵi − ŵj) as:

E
[
T k1,k | Fk+1

]
= E

 ∑
(i,j)∈E

T̃ k
ij | Fk+1


=

∑
(i,j)∈E

E

[
Ȳ k
ij

(
Ȳ k
ij − 1

)
k(k − 1)

| Fk+1

]
+ b2ij − 2bijE

[
Ȳ k
ij | Fk+1

k

]

=
∑

(i,j)∈E

Ȳ k+1
ij

(
Ȳ k+1
ij − 1

)
k(k + 1)

+ b2ij − 2bij
Ȳ k+1
ij

k + 1
=

∑
(i,j)∈E

T̃ k+1
ij = T k1,k+1.

This completes the proof.

B. Intermediary Lemmata

In order to derive the proof of Theorem 5, we will first prove the following intermediary lemma that gives bounds
on type I and type II error probabilities where the threshold is a function of the estimated weights ŵ. Additionally, the
lemma relies on a variant of the Hanson-Wright inequality that is time-uniform (see Lemma 5) and specialized to our
setting; this inequality is also proved in this subsection.

Lemma 4 (Conditional Bounds on Type I and Type II Error Probabilities). For any α ∈ (0, 1] and for ŵ estimated from
the first k1 pairwise comparison for each pair in E , there exist a constant c such that for ν ∈ (0, 1/e), the following
bounds hold under hypothesis H0 and H1 respectively:

PH0

(
∃k ≥ 2, T k1,k ≥ ∥F− F̂∥2F + c

√
|E|
k

ℓk,ν + 4
∥F− F̂∥F√

k

√
ℓk,ν

)
≤ ν,

PH1

(
∃k ≥ 2, T k1,k − ∥P − F∥2F ≥ ∥F− F̂∥2F − 2∥F− F̂∥F∥P − F∥F−

− c

√
|E|
k

ℓk,ν − 4
∥P − F∥F + ∥F− F̂∥F√

k

√
ℓk,ν

)
≤ ν,

where ℓk,ν = log
(
3.5 log2(k)/ν

)
.

Proof.
Part 1. We will first prove the bound under hypothesis H0. Based on the additional notation defined at the beginning

of the Appendix, we can simplify the (i, j)th term T k1,k
ij of the test-statistic T k1,k as:

T k1,k
ij =

Ȳ k
ij(Ȳ

k
ij − 1)

k(k − 1)
+ F (ŵi − ŵj)

2 − 2F (ŵi − ŵj)
Ȳ k
ij

k

=

∑k
l,m=1:l ̸=m Y m

ij Y
l
ij

k(k − 1)
+ F (ŵi − ŵj)

2 − 2
F (ŵi − ŵj)

m
l=1Y

m
ij

k
ζ1
= (ykij)

TA(k)ykij + 1T
kA

(k)1kF (w∗
i − w∗

j )
2 − 2F (w∗

i − w∗
j )1

T
kA

(k)ykij+

(F (ŵi − ŵj)− F (w∗
i − w∗

j ))
2 − 2(F (ŵi − ŵj)− F (w∗

i − w∗
j ))

(
Ȳ k
ij

k
− F (w∗

i − w∗
j )

)
ζ2
= (ykij − F (w∗

i − w∗
j )1k)

TA(k)(ykij − F (w∗
i − w∗

j )1k)︸ ︷︷ ︸
I1,k
ij

+(F (ŵi − ŵj)− F (w∗
i − w∗

j ))
2

− 2(F (ŵi − ŵj)− F (w∗
i − w∗

j ))

(
Ȳ k
ij

k
− F (w∗

i − w∗
j )

)
︸ ︷︷ ︸

I2,k
ij

,
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where in ζ1 we have A(k) ≜ 1k1
T
k −Ik

k(k−1) and ykij ∈ Rk is a vector such that ykij = [Y 1
ij , . . . , Y

k
ij ] and in ζ2 the term I1,kij

follows by observing that(
ykij − F (w∗

i − w∗
j )1k

)T
A(k)

(
ykij − F (w∗

i − w∗
j )1k

)
=

(ykij)
TA(k)ykij + 1T

kA
(k)1kF (w∗

i − w∗
j )

2 − 2pij1
T
kA

(k)ykij . (45)

Now, we will upper bound the quadratic variation term
∑

(i,j)∈E I
1,k
ij . For this we will utilize Lemma 5 to obtain the

tail bounds for any ν ∈ (0, 1/e) to obtain (for some constant c):

P
(
∃k ≥ 2 :

∑
(i,j)∈E

I1,kij > c

√
|E|
k

ℓk,ν

)
≤ ν

2
.

It is straightforward to show that
∑

(i,j)∈E I
2,k
ij is (4∥F − F̂∥2F/k)-sub-gaussian. Therefore, by utilizing time-uniform

version of Hoeffding inequality [48, Corollary 8] for the user-defined h(k) = (πk)2/6 (also used for the stitching
argument in the proof of Lemma 5), we obtain for any ν ∈ (0, 1)

P
(
∃k ≥ 2 :

∑
(i,j)∈E

I2,kij > −2∥F− F̂∥F

√
2
log(h(log2(k))) + log(2/ν)

k/2

)
≤ ν

2
.

Combining the two tail bounds and a simple calculation completes the proof for type I error.
Part 2. Observe that under hypothesis H1 we have

T k
ij − (pij − F (w∗

i−w∗
j ))

2 =
Ȳ k
ij(Ȳ

k
ij − 1)

k(k − 1)
− p2ij + F (ŵi − ŵj)

2 − F (w∗
i − w∗

j )
2

+ 2

(
F (w∗

i − w∗
j )pij − F (ŵi − ŵj)

Ȳ k
ij

k

)
ζ1
= (ykij)

TA(k)ykij − 1T
kA

(k)1kp
2
ij + F (ŵi − ŵj)

2 − F (w∗
i − w∗

j )
2

+ 2pij(F (w∗
i − w∗

j )− F (ŵi − ŵj)) + 2

(
pij −

Ȳ k
ij

k

)
F (ŵi − ŵj), (46)

where in ζ1 we have Ak ≜ 1k1
T
k −Ik

k(k−1) and ykij ∈ Rk is avector ykij = [y′ij , . . . ., y
k
ij ] as before. Now, observe that the term

(ykij)
TA(k)ykij − 1T

kA
(k)1kp

2
ij =

(
ykij − pij1k

)T
A(k)

(
ykij − pij1k

)
+ 2pij

(
ykij − pij1k

)T
A(k)1k

=
(
ykij − pij1k

)T
A(k)

(
ykij − pij1k

)
+ 2pij

(
Ȳ k
ij

k
− pij

)
.

Substituting the above bound in (46), we obtain

T k
ij − (pij − F (w∗

i−w∗
j ))

2 =
(
ykij − pij1k

)T
A(k)

(
ykij − pij1k

)︸ ︷︷ ︸
I3,k
ij

+ 2(pij − F (ŵi − ŵj))

(
Ȳ k
ij

k
− pij

)
︸ ︷︷ ︸

I4,k
ij

+ (F (ŵi − ŵj)− F (w∗
i − w∗

j ))(F (ŵi − ŵj) + F (w∗
i − w∗

j )− 2pij)︸ ︷︷ ︸
I5,k
ij

.

Now the term
∑

(i,j)∈E I
3,k
ij is bounded by utilizing Lemma 5 to obtain the tail bounds for some constant c

P
(
∃k ≥ 2 :

∑
(i,j)∈E

I3,kij > −c

√
|E|
k

ℓk,ν

)
≤ ν

2
.

22



And the term
∑

(i,j)∈E I
4,k
ij is bounded by utilizing adaptive Hoeffding’s inequality [48, Corollary 8] to obtain the tail

bounds

P
(
∃k ≥ 2 :

∑
(i,j)∈E

I4,kij > −4∥P − F̂∥F

√
ℓk,ν
k

)
≤ ν

2
.

An application of triangle inequality to the above equation yields

P
(
∃k ≥ 2 :

∑
(i,j)∈E

I4,kij > −4(∥P − F∥F + ∥F− F̂∥F)
√

ℓk,ν
k

)
≤ ν

2
.

Finally, the term
∑

(i,j)∈E I
5,k
ij is bounded using Cauchy-Schwarz inequality as:∑

(i,j)∈E

I5,kij =
∑

(i,j)∈E

(F (ŵi − ŵj)− F (w∗
i − w∗

j ))
2

+
∑

(i,j)∈E

2(F (ŵi − ŵj)− F (w∗
i − w∗

j ))(F (w∗
i − w∗

j )− pij)

≥ ∥F− F̂∥2F − 2∥F− F̂∥F∥F− P∥F.

Combining the three bounds for I3,kij , I4,kij , I5,kij completes the proof for type II error.

Lemma 5 (Time-Uniform Quadratic Bound). For any element v in a finite set V , consider a sequence of independent
random variables x

(1)
v , x

(2)
v , x

(3)
v , . . . such that x

(l)
v ∼ Bernoulli(pv) for l ∈ N and some pv ∈ (0, 1). Define the

random vector x̄
(k)
v =

(
x
(1)
v , x

(2)
v , . . . , x

(k)
v

)
∈ Rk and let {A(k) ∈ Rk×k : k ∈ N} be a sequence of matrices such

that A(k) = (1k1
T
k − Ik)/(k(k − 1)). Then, there exists a constant c > 0 such that for all ν ∈ (0, 1/e), we have

P

(
∃k ≥ 2,

∑
v∈V

(x̄(k)
v − pv1k)

TA(k)(x̄(k)
v − pv1k) > c

√
|V|
k

log
(
3.5 log2(k)/ν

))
≤ ν.

Proof. Denote s
(k)
v = (x̄

(k)
v − pv1k)

TA(k)(x̄
(k)
v − pv1k). Recall that we had shown that {s(k)v : k ∈ N \ 1} forms a

reverse-martingale with respect to canonical reverse filtration {σ
(∑k

m=1 x
(m)
v , x

(k+1)
v , x

(k+2)
v , . . .

)
: k ∈ N \ 1}, i.e.,

for k ≥ 2, we have

E
[
(x̄(k)

v − pv1k)
TA(k)(x̄(k)

v − pv1k)|Fk+1

]
= (x̄(k+1)

v − pv1k+1)
TA(k+1)(x̄(k+1)

v − pv1k+1).

This fact follows from an expansion of the corresponding terms (similar to (45)) and then the proof follows as in
Section VII-A. Now, for any v ∈ V , we define a richer class of filtration known as exchangeable filtration {F̃v

k : k ∈
N\1} [53], which denotes the σ-algebra generated by all real-valued Borel-measurable functions of x(1)

v , x
(2)
v , x

(3)
v , . . .

which are permutation-symmetric in the first k arguments. It follows directly that s(k)v is also a reverse-martingale with
respect to F̃v

k . Therefore, by [48, Theorem 4], we have that the mapping x → exp(λx) for λ ∈ (0,∞), when applied
to s

(k)
v , yields a reverse-submartingale with respect to filtration F̃v

k . Define the product σ-algebra F̃k =
⊗

v∈V F̃v
k .

Now, for any k0 ≥ 2 and k0 ∈ N, we have that

P

(
∃k ≥ k0 :

∑
v∈V

s(k)v ≥ u

)
= P

(
∃k ≥ k0 : eλ

∑
v∈V s(k)

v ≥ eλu
)

≤
E
[
exp
{(

λ
∑

v∈V s
(k0)
v

)}]
eλu

.

where the last step follows from Ville’s inequality for nonnegative reverse submartingales [48, Theorem 2]. Also note
that s(k)v ≤ 1 for all k with probability 1, therefore E[eλs(k)

v ] always exists. Now note that∑
v∈V

(x̄(k)
v − pv1k)

TA(k)(x̄(k)
v − pv1k) =

∑
v∈V

k∑
i,k=1i ̸=j

(x
(i)
v − pv)(x

(j)
v − pv)

k(k − 1)

= (x̄
(k)
V )TA

(k)
V (x̄

(k)
V ),
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where (x̄
(k)
V )T = [(x̄

(k)
v1 − 1kpv1)

T, . . . , (x̄
(k)
v|V| − 1kpv|V|)

T] is a vector in Rk|V| formed by concatenating the vectors
x̄
(k)
vi for all vi ∈ V and i ∈ [|V|]. And A

(k)
V ∈ R|V|k×|V|k formed by stacking the matrices A

(k)
v as a diagonal block

structure. Now by [50, Theorem 1.1], we have that there exists constants c, c′ such that we have

E
[
eλ

∑
v∈V s(k0)

v

]
≤ exp

(
−cλ2∥A(k0)

V ∥2F
)

for λ ≤ c′/∥A(k0)
V ∥2,

where ∥ · ∥2 denotes the spectral norm. Therefore, we have that

P

(
∃k ≥ k0 :

∑
v∈V

s(k)v ≥ u

)
≤ exp

(
−λu+ cλ2∥A(k0)

V ∥2F
)

for λ ≤ c′/∥A(k0)
V ∥2.

Now, by optimizing over λ, we can conclude that

P

(
∃k ≥ k0 :

∑
v∈V

s(k)v ≥ u

)
≤ exp

(
−cmin

{
u2

∥A(k0)
V ∥2F

,
u

∥A(k0)
V ∥2

})
. (47)

By the block structure of A(k0)
V , we have the following

∥A(k0)
V ∥2F =

|V|
k0(k0 − 1)

, and ∥A(k0)
V ∥2 = max

v∈V
∥A(k0)

v ∥2 =
1

k0
.

Substituting, the above values in (47) we obtain that for all ν ∈ (0, 1/e), we have the following result for some constant
c̃:

P

(
∃k ≥ k0 :

∑
v∈V

s(k)v ≥ c̃

√
|V| log(1/ν)

k0

)
≤ ν

The rest of the proof follows by a stitching argument [54] and is provided below for completeness. For any ν ∈ (0, 1/e),
define a function h(k) = (πk)2

6 . Now, observe that

P
(
∃k ≥ 2 :

∑
v∈V

s(k)v ≥ c̃

√
|V|
k

log
(h(log2 k)

ν

))

≤
∞∑
l=1

P

(
∃k ≥ 2l :

∑
v∈V

s(k)v ≥ c̃

√
|V|
2l

log
(h(l)

ν

))

≤
∞∑
l=1

ν

h(l)
= ν.

Finally, the statement in the lemma follows by a simple calculation.

C. Proof of Theorem 5

Fix t ≥ 1, and recall that from Lemma 2, for some constant c0 we have that with probability atmost e−t, ∥F− F̂∥F ≥√
c0tn/k1. This implies that with probability at least 1− e−t, we have

∥F− F̂∥2F + c

√
|E|
k

ℓk,ν + 4
∥F− F̂∥F√

k

√
ℓk,ν ≤ c0tn

k1
+ c

|E| 12
k

ℓk,ν + 4

√
c0tnℓk,ν
kk1

.

Therefore, by using a basic union-bound argument to the bound under null hypothesis in Lemma 4, we have

PH0

(
∃k ≥ 2, T k1,k ≥ c0tn

k1
+ c

|E| 12
k

ℓk,ν + 4

√
c0tnℓk,ν
kk1

)
≤ ν+e−t.

The bound on type II error follows by a similar argument. First, using basic algebra, and using D to denote ∥P −F∥F,
we obtain from the bound under H1 in Lemma 4 that:

PH1

(
∃k ≥ 2, T k1,k ≥ (D − ∥F− F̂∥F)2 − c

|E| 12
k

ℓk,ν − 4
(D + ∥F− F̂∥F)√

k

√
ℓk,ν

)
≤ ν.

Now utilizing the fact that the D ≥
√
c0tn/(k1) and the same union bound technique as above, we obtain that

PH1

(
∃k ≥ 2, T k1,k −

(
D −

√
c0tn

k1

)2

≤ −c|E|
1
2 ℓk,ν
k
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− 4

(
D√
k
+

√
c0tn

k1k

)√
ℓk,ν

)
≤ ν + e−t.

Since the above bounds for any pairwise comparison matrix P satisfy Assumption 1 and nϵ = Θ(D) by Theorem 1,
we can take supremum with respect to P in classes M0 and M1(

√
c̃0t/(nk1)) on type I and type II error probability

bounds, respectively. This completes the proof of the theorem.

VIII. EXPERIMENTS

In this section, we develop a data-driven approach to select the threshold for our test T , and conduct simulations to
validate our theoretical results and its evaluations on synthetic and real-world datasets.

Estimating the threshold. Given a pairwise comparison dataset Z ≜ {Zm
ij : (i, j) ∈ E , m ∈ [ki,j ]}, we employ

an empirical quantile approach to determine the critical threshold for our hypothesis testing problem. We generate
multiple TF models with random skill scores w ∈ Rn such that ∥w∥∞ ≤ b for some constant b and simulate kij “i
vs. j” comparisons by sampling binomial random variables {Z̃ij ∼ Bin(kij , F (wi −wj)}(i,j)∈E . We then compute the
test statistic T for each simulated dataset, repeating the process a sufficient number of times to build a distribution of
test statistics. Finally, we extract the 95th percentile value (or 0.95 quantile) from this distribution as our empirical
threshold.
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In our first experiment, we investigate the behaviour of threshold for test T based on this empirical quantile approach
for various values of n and k, and for different graph topologies and TF models. We considered values of n ranging
from 15 to 55 with intervals of 10, k ∈ {12, 20}, and graph topologies including complete graphs, ⌈

√
n ⌉ × ⌈

√
n ⌉

toroidal grids and sparse graphs generated from Erdős-Rényi G(n, p) model with parameter p = 2 log2(n)/n and the
TF models included standard Thurstone (Case V) and BTL models. For each choice of parameters, we generated
400 models by randomly sampling weights and with b = F−1(0.98)/2 and generated synthetic comparison data. The
scaled test-statistic kλ2(L)(G) · T/(ndmax) was computed for every parameter choice and the 95th percentile value of
this scaled T was identified as the threshold γ. Fig. 1 plots this 95th percentile values with respect to n for various
parameter choices. Notably, the value γ remains roughly constant with n, k and model F for complete graphs. However,
for toroidal grid graphs, a significant decrease in the scaled test statistic is observed, suggesting that our error bounds
may be overly conservative in estimating the deviation in T .

In our next experiment, we apply our test to the LMSYS chatbot leaderboard [55], a widely used benchmark for
evaluating the performance of LLMs. The dataset contains a collection of pairwise comparisons between various LLMs
based on their response to prompts, which are then used to obtain ELO ratings. We retain the directional nature of
comparisons, where an “i vs. j” comparison indicates model i as the first response and j as second during the evaluation.
We rank the LLMs based on their frequency of appearance in the dataset and perform the test repeatedly on top n
LLMs in this ordering, with n ranging from 5 to 21 with gaps of 2, for both Thurstone and BTL models. For each n,
we plot the values in Fig. 2 of (scaled) test-statistic kavg · T/n and the obtained (scaled) thresholds using the quantile
approach (with same parameters as above), where kavg is the average of kij over all (i, j) ∈ E . By randomizing over
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the partitioning of dataset Z into Z1 and Z2 and computing T each time, we essentially obtain a distribution of T and
plot these values in Fig. 2 as a scatter plot. The figure highlights that both BTL and Thurstone models perform well
in modeling for smaller values of n with only 10% of samples above the threshold but exhibit significant deviations
for larger values of n (as around 60% samples are above the threshold for n = 21). Notably, for both experiments,
the error bars are 96% confidence intervals (see Appendix B for additional details), and all results were obtained using
modest computational resources within a few minutes to an hour.

IX. CONCLUSION

In this work, we developed a rigorous hypothesis testing framework to determine whether pairwise comparison data
is generated by an underlying generalized Thurstone model with a given choice function F . Our analysis introduced
the notion of separation distance to quantify the deviation of a pairwise comparison model from the set of TF models,
enabling us to frame the hypothesis testing problem in a minimax sense. Leveraging this formulation, we derived both
upper and lower bounds on the critical threshold of our testing problem, revealing key dependencies on the topology
of the observation graph. These bounds were shown to be tight for certain graph classes, such as complete graphs.

In addition, we proposed a hypothesis test based on the separation distance and established theoretical guarantees,
including “time-uniform” bounds on Type I and Type II error probabilities, as well as a minimax lower bound on
the risk of the testing problem. Alongside this, auxiliary results such as error bounds for parameter estimation and
confidence intervals under the null hypothesis were derived. To validate our findings, we conducted experiments on
both synthetic and real-world datasets and introduced a data-driven approach for determining the test threshold.

This study opens up several avenues for future research. For instance, extending the hypothesis testing framework
to handle general multi-way comparisons rather than pairwise comparisons. Other directions include developing active
testing techniques within the framework of generalized Thurstone models that optimize test performance. Finally, an
important avenue is extending the testing and estimation framework to dependent data, as real-world data often exhibits
correlations that could affect estimation as well as testing results.
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APPENDIX A
SIMPLIFIED EXPRESSIONS FOR TYPE I AND II ERROR PROBABILITIES

We obtain the following corollaries by plugging in the parameter values in Theorem 5 for a complete graph and
single cycle on n nodes.

Corollary 1 (Type I and Type II Error Probability Bounds for Complete Graph). For the setting in Theorem 5 assume
that we have a complete graph on n nodes, then there exists (different) constants c1, c2, c3, c4, c5 > 0 such that for
ϵ ≥ c5/

√
nk1, such that for all ν ∈ (0, 1/e) and t ≥ 1, we have

PH0

(
∃k ≥ 2, T k1,k ≥ c1tn
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k
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√
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kk1

)
≤ ν + e−t,
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Corollary 2 (Type I and Type II Error Probability Bounds for Single Cycle Graph). For the setting in Theorem 5,
assume that we have a single cycle graph on n nodes, then there exists (different) constants c1, c2, c3, c4, c5 > 0 such
that for ϵ ≥ c5/

√
nk1, such that for all ν ∈ (0, 1/e) and t ≥ 1, we have
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APPENDIX B
EXPERIMENTS DETAILS AND ADDITIONAL EXPERIMENTS

In this appendix, we will provide additional details about the experiments that were performed in Section VIII, and
in addition, we will empirically calculate the confidence intervals based on the expression in Proposition 4.

A. Additional Details for Experiments

In this section, we provide additional details on the experimental setup and methodology for the experiments in
Section VIII.

Error bars and estimation of ŵ. To estimate the 95th quantile of the test statistics T , we used 400 samples. The
error bars were based on the two-sided distribution-free conservative estimates presented in [56]. Specifically, for the
95th quantile, the upper 96% confidence interval was computed as the 97th quantile of the computed tests T , and the
lower confidence interval was computed as the 92.5% quantile. Moreover, in all of our experiments the estimation of
ŵ was performed using standard gradient descent algorithm with a learning rate of 0.01 and for a maximum of 3000
iterations, until the norm of the gradient was less than 10−5.

Testing on LYMSYS dataset. In our experiment on LYMSYS dataset, we used a maximum of 200 samples per
pair and discarded pairs with fewer than 30 observed comparisons to reduce the imbalance in the data across pairs.
The observation graph was a complete graph except for the larger values of n which had a few edges missing.

B. Confidence Intervals Under Null Hypothesis

In this sub-section, we will discuss a method to approximately calculate the confidence intervals under the null
hypothesis, with a focus on the BTL model. While our discussion is specific to the BTL model, it can be easily
generalized to other Thurstone models. Specifically, our goal is to approximately calculate the constants in Proposition 4
and as well as approximate the distribution of ∥F̂−F∥F. For the former, we will estimating the constants by conducting
some simulation while for the latter, we will be utilizing gaussian approximation based on the asymptotic normality
of ŵ − w∗ which was proved for the BTL model [35, Proposition 4.1]. Similar results have been established for the
general Thurstone models as in [36].

Estimating constant c7 in Proposition 4. To estimate the constant, we plot several trajectories of the normalized
stochastic process

√
k

|V|
∑

v∈V(x̄
(k)
v − pv1k)

TA(k)(x̄
(k)
v − pv1k) with x̄

(k)
v generated as in Lemma 5 and the pv selected

uniformly at random from (0, 1). The values of |V| varied from 10 to 100 with gaps of 10. Fig. 3 plots the various
trajectories of the (normalized) stochastic process as a function of k and also plots the 95th quantile for the stochastic
process for all k ∈ [100]. The figure suggests that c7 ≈ 0.45 is a good approximation to the value of c7 (in the fixed
sample setting).

Estimating the quantile of ∥F − F̂∥F. In order to estimate ∥F − F̂∥F, we will utilize the asymptotic normality of
vector ∆ = ŵ−w∗. Let ŵ be computed as in (7), then under the conditions of mild regularity conditions it was shown
in [35, Proposition 4.1] that

(ρ1(ŵ)(ŵ1 − w∗
1), . . . , ρn(ŵ)(ŵn − ŵ∗

n))
d→ N (0, Ik),

where ρi(w) =
√
k
∑

j:(i,j)∈E F
′(ŵi − ŵj) and d→ denotes the convergence in distribution. We will utilize this

asymptotic normality result to approximate the distribution of ∥F̂− F∥F using the delta method as:

∥F− F̂∥2F =
∑

(i,j)∈E

(
F
(
w∗

i − w∗
j

)
− F (ŵi − ŵj)

)2
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Fig. 3: Plot of various trajectories of stochastic
process in Lemma 5.
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Fig. 5: Estimated threshold based on Proposition 4.

≈
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(i,j)∈E

F ′(ŵi − ŵj)
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i − ŵi)−
(
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j − ŵj

))2
=
∑
(i,j)

F ′(ŵi − ŵj)
2
(∆i −∆j)

2
= 2∆TLF (ŵ)∆,

where we define LF (w) to be the following matrix

(LF (w))ij =


−F ′(wi − wj)

2 if (i, j) ∈ E∑
j:(i,j)∈E F

′(wi − wj)
2 if i = j

0 otherwise.

Since ∆ is asymptotically normal (as k → ∞), therefore we approximate the distribution of ∥F− F̂∥2F with distribution
of 2∆T(ŵ)LF (ŵ)∆(ŵ) where ∆i(w) ∼ N

(
0, 1

k
∑

j:(i,j)∈E F ′(wi−wj)

)
. In Fig. 4, we plot the empirical distribution of

∥F (ŵ)− F (w∗)∥F calculated by randomizing over the choice of partitioning of Z into Z1 and Z2. We also plot its
asymptotic approximation, i.e., the empirical distribution of 2∆T(ŵ)LF (ŵ)∆(ŵ). Clearly, as can be seen in Fig. 4,
our asymptotic approximation does indeed well approximate the empirical distribution even for a small number of
samples. Finally, based on the the 0.95-quantile of the empirical distribution of 2∆T(ŵ)LF (ŵ)∆(ŵ), we compute the
expression in for c7 = 0.45 and plot the estimated confidence intervals in Fig. 5. It can be observed that for a complete
graph, our estimated threshold values indeed do approach the value of 0.8 in Fig. 2 computed via empirical quantile
method.
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